Parámetros de Lamé

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En elasticidad lineal, los parámetros de Lamé son dos constantes elásticas que caracterizan por completo el comportamiento elástico de un sólido isótropo para pequeñas deformaciones, estos dos parámetros se designan como:

La ecuación constitutiva de un material elástico lineal homogéneo e isótropo, llamada ley de Hooke viene dada en 3D por la expresión general:

\boldsymbol\sigma=2\mu \boldsymbol\varepsilon +\lambda \; \mathrm{tr}(\boldsymbol\varepsilon)\mathbf{I}

donde σ es la tensión, ε el tensor de deformación, la \scriptstyle I la matriz identidad y \scriptstyle\mathrm{tr}(\cdot) la función traza.

El primer parámetro λ no tiene una interpretación física directa o simple, pero sirve para simplificar la matriz de rigidez en la ley de Hooke. Los dos parámetros juntos constituyen una parametrización del módulo de elasticidad para medios isótropos homogéneos, y están así relacionados con los otros módulos de elasticidad.

Los parámetros reciben su nombre en honor a Gabriel Lamé.

Referencias[editar]

  • F. Kang, S. Zhong-Ci, Mathematical Theory of Elastic Structures, Springer New York, ISBN 0-387-51326-4, (1981)
  • G. Mavko, T. Mukerji, J. Dvorkin, The Rock Physics Handbook, Cambridge University Press (paperback), ISBN 0-521-54344-4, (2003)
Fórmulas de conversión
Los materiales elásticos lineales isótropos homogéneos tienen sus propiedades elásticas únicamente determinadas por dos módulos cualesquiera de los especificados anteriormente, por lo tanto, cualquier otro módulo de elasticidad puede ser calculado de acuerdo a estas fórmulas.
(\lambda,\,G) (E,\,G) (K,\,\lambda) (K,\,G) (\lambda,\,\nu) (G,\,\nu) (E,\,\nu) (K,\, \nu) (K,\,E) (M,\,G)
K=\, \lambda+ \frac{2G}{3} \frac{EG}{3(3G-E)} \lambda\frac{1+\nu}{3\nu} \frac{2G(1+\nu)}{3(1-2\nu)} \frac{E}{3(1-2\nu)} M - \frac{4G}{3}
E=\, G\frac{3\lambda + 2G}{\lambda + G} 9K\frac{K-\lambda}{3K-\lambda} \frac{9KG}{3K+G} \frac{\lambda(1+\nu)(1-2\nu)}{\nu} 2G(1+\nu)\, 3K(1-2\nu)\, G\frac{3M-4G}{M-G}
\lambda=\, G\frac{E-2G}{3G-E} K-\frac{2G}{3} \frac{2 G \nu}{1-2\nu} \frac{E\nu}{(1+\nu)(1-2\nu)} \frac{3K\nu}{1+\nu} \frac{3K(3K-E)}{9K-E} M - 2G\,
G=\, 3\frac{K-\lambda}{2} \lambda\frac{1-2\nu}{2\nu} \frac{E}{2(1+\nu)} 3K\frac{1-2\nu}{2(1+\nu)} \frac{3KE}{9K-E}
\nu=\, \frac{\lambda}{2(\lambda + G)} \frac{E}{2G}-1 \frac{\lambda}{3K-\lambda} \frac{3K-2G}{2(3K+G)} \frac{3K-E}{6K} \frac{M - 2G}{2M - 2G}
M=\, \lambda+2G\, G\frac{4G-E}{3G-E} 3K-2\lambda\, K+\frac{4G}{3} \lambda \frac{1-\nu}{\nu} G\frac{2-2\nu}{1-2\nu} E\frac{1-\nu}{(1+\nu)(1-2\nu)} 3K\frac{1-\nu}{1+\nu} 3K\frac{3K+E}{9K-E}