Números primos gemelos

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda

En matemáticas, y más concretamente en teoría de números, dos números primos (p, q) son números primos gemelos si, siendo q > p, se cumple q -p = 2. Todos los números primos, excepto el 2, son impares. Los únicos dos números primos consecutivos son el 2 y el 3. La cuestión surge de encontrar dos números primos que sean impares consecutivos, es decir que la diferencia del mayor al menor sea 2. El primero en llamarlos así fue Paul Stäckel.

Propiedades[editar]

A partir del par (5, 7), el número intermedio es siempre múltiplo de 6, por ende de 2 y de 3.

In 1915, Viggo Brun probó que la suma de los inversos de todos los números primos gemelos es convergente[1]​ a un número, ahora llamado la constante de Brun y denotado B2:

Esto contrasta con la suma de los inversos de todos los primos, que diverge. Calculando los primos gemelos hasta 1014 (y al mismo tiempo descubriendo el error de división del Intel Pentium), Thomas Nicely estimó la constante de Brun en 1,902160578. La mejor estimación hasta la actualidad es la de Pascal Sebah y Patrick Demichel publicada en el año 2002, con todos los primos gemelos hasta 1016, obteniendo 1,902160583104 como aproximación.

Se ha demostrado que el par n, n + 2 es de números primos gemelos si y sólo si:

Distribución de los números primos gemelos[editar]

No se sabe si existen infinitos números primos gemelos, aunque se cree ampliamente que sí. Éste es el contenido de la conjetura de los números primos gemelos. Una forma fuerte de la conjetura de los números primos gemelos, la conjetura de Hardy-Littlewood, postula una ley de distribución de los números primos gemelos similar al teorema de los números primos:

donde C2 es la constante de los números primos gemelos, definida mediante el siguiente producto de Euler:

Los números primos gemelos más grandes conocidos son el par 2996863034895 · 21290000 - 1 y 2996863034895 · 21290000 + 1, que tienen 388342 dígitos y fueron descubiertos en septiembre de 2016[2]

Hay 808.675.888.577.436 pares de primos gemelos menores que 1018.[3]

Dúos de primos gemelos[editar]

Hay 35 dúos de números primos gemelos entre los números enteros menores que 1000 y son (A077800):

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883).

Véase también[editar]

Referencias[editar]

  1. Brun, V. (1915), «Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare», Archiv for Mathematik og Naturvidenskab (en alemán) 34 (8): 3-19, ISSN 0365-4524, JFM 45.0330.16 
  2. Caldwell, Chris K. «The Prime Database: 2996863034895*2^1290000-1». 
  3. Tomás Oliveira e Silva (7 de abril de 2008). «Tables of values of pi(x) and of pi2(x)». Aveiro University. Consultado el 7 de enero de 2011. 

Enlaces externos[editar]