Ley de Boyle-Mariotte

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Animación: masa y temperatura constantes

La ley de Boyle-Mariotte (ley de Boyle) es una de las leyes de los gases que relaciona el volumen y la presión de una cierta cantidad de gas mantenida a temperatura constante.

La ley de Boyle-Mariotte fue formulada independientemente por el físico y químico británico Robert Boyle en 1662 y el físico y botánico francés Edme Mariotte en 1676.[1]

Historia[editar]

Gráfico de los datos originales de Boyle mostrando la curva hiperbólica de la relación entre la presión (P) y el volumen (V) de la forma P = k/V.

Esta relación entre presión y volumen fue notada por primera vez por Richard Towneley y Henry Power en el siglo XVII.[2][3]Robert Boyle confirmó su descubrimiento a través de experimentos y publicó los resultados.[4]​ Según Robert Gunther y otras autoridades, fue el asistente de Boyle, Robert Hooke, quien construyó el aparato experimental. La ley de Boyle se basa en experimentos con aire, al que consideraba un fluido de partículas en reposo entre pequeños resortes invisibles. En ese momento, el aire todavía se consideraba uno de los cuatro elementos, pero Boyle no estaba de acuerdo. Probablemente el interés de Boyle fue entender el aire como un elemento esencial de la vida;[5]​ por ejemplo, publicó trabajos sobre el crecimiento de las plantas sin aire.[6]​ Boyle usó un tubo cerrado en forma de J y, después de verter mercurio por un lado, obligó al aire del otro lado a contraerse bajo la presión del mercurio. Después de repetir el experimento varias veces y utilizando diferentes cantidades de mercurio, descubrió que, en condiciones controladas, la presión de un gas es inversamente proporcional al volumen que ocupa.[7]​ El físico francés Edme Mariotte (1620–1684) descubrió la misma ley independientemente de Boyle en 1679,[8]​ pero Boyle ya lo había publicado en 1662.[7]​ Sin embargo, Mariotte descubrió que el volumen del aire cambia con la temperatura.[9]​ Por lo tanto, esta ley a veces se denomina ley de Mariotte o ley de Boyle-Mariotte. Más tarde, en 1687 en el Philosophiæ Naturalis Principia Mathematica, Newton demostró matemáticamente que en un fluido elástico formado por partículas en reposo, entre las que se encuentran fuerzas de repulsión inversamente proporcionales a su distancia, la densidad sería directamente proporcional a la presión,[10]​ pero este tratado matemático no es la explicación física de la relación observada. En lugar de una teoría estática, se necesita una teoría cinética, que fue proporcionada dos siglos más tarde por Maxwell y Boltzmann.

Esta ley fue la primera ley física que se expresó en forma de ecuación que describía la dependencia de dos cantidades variables.[7]

Simbología[editar]

Simbología
Símbolo Nombre Unidad
Constante[11] Pa m3
Presión Pa
Presión inicial Pa
Presión final Pa
Volumen m3
Volumen inicial m3
Volumen final m3

Definición[editar]

La propia ley puede enunciarse de la siguiente manera:

Para un gas a temperatura constante, el volumen es inversamente proporcional a la presión sobre éste.[12]

Se puede explicar matemáticamente con:

Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye, el volumen aumenta.

La ley de Boyle es una ley de los gases, que establece que la presión y el volumen de un gas tienen una relación inversa. Si el volumen aumenta, entonces la presión disminuye y viceversa, cuando la temperatura se mantiene constante.

Por lo tanto, cuando el volumen se reduce a la mitad, la presión se duplica; y si el volumen se duplica, la presión se reduce a la mitad.

No es necesario conocer el valor exacto de la constante () para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:

Además, si se despeja cualquier incógnita se obtiene lo siguiente:

Deducción
1
Ecuaciones
Despejando
También conocido como la regla de tres.

Ley de Boyle Mariotte.png

Esta ley es una simplificación de la Ley de los gases ideales particularizada para procesos isotérmicos de una cierta masa de gas constante.

Junto con la ley de Charles, la ley de Gay-Lussac, la ley de Avogadro y la ley de Graham, la ley de Boyle forma las leyes de los gases, que describen la conducta de un gas ideal. Las tres primeras leyes pueden ser generalizadas en la ley de los gases ideales.

Experimento de Boyle[editar]

Esta teoría explicaba que los átomos y moléculas, en el estado gaseoso, se comportan como centros puntuales de masa que sólo en el rango de las altas presiones y bajas temperaturas son afectadas por las fuerzas atractivas. Fuera de estos límites, las propiedades físicas de un gas se deben principalmente al movimiento independiente de sus moléculas.

Si se considera a un gas contenido en un recipiente, la presión que este ejerce es la fuerza por unidad de área sobre las paredes debida a los impactos elásticos de las moléculas.

Robert Boyle descubrió en 1662 la relación matemática entre la presión y el volumen de una cantidad fija de gas a temperatura constante. Según la ley de Boyle, el volumen de una masa dada de gas varía en forma inversamente proporcional a la presión cuando la temperatura se mantiene en un valor fijo. La expresión matemática de la ley se escribe:

(proceso isotérmico) (13.1)

La magnitud de la constante k es función de la cantidad química de gas y de la temperatura.

Para dos estados diferentes 1 y 2, la ley implica:

(13.2)

Es decir, si se explora el comportamiento físico de un gas de acuerdo con la ley de Boyle y asumiendo comportamiento ideal, se puede concluir que, a temperatura constante:

Si se duplica la presión sobre una masa dada de gas, su volumen se reduce a la mitad. Si el volumen de una masa dada de gas se triplica, la presión se reduce en un tercio.

Es usual en los experimentos sobre la ley de Boyle obtener un conjunto de datos de presión y volumen, los cuales se pueden representar gráficamente para obtener el valor de (). Un gráfico de () versus () (figura 13.1) da como resultado la hipérbola característica que corresponde a la ecuación 13.1. Si se repite el experimento a temperaturas diferentes se genera una familia de hipérbolas, y debido a que la temperatura es constante a lo largo de cada línea, éstas curvas se denominan isotermas.


Para poder verificar su teoría, Mariotte introdujo un gas en un cilindro con un émbolo y comprobó las distintas presiones al bajar el émbolo.[13]​ A continuación hay una tabla que muestra algunos de los resultados obtenidos en este fenómeno siendo así:

Experimento de Mariotte
× P (atm) V (L) P · V
0,5 60 30
1,0 30 30
1,5 20 30
2,0 15 30
2,5 12 30
3,0 10 30

Si se observan los datos de la tabla se puede comprobar que al aumentar la presión, el volumen disminuye. Por ello se usa una diagonal isotérmica para representarlo en una gráfica. () aumenta y que al multiplicar () y () se obtiene .

Sistema de respiración humana[editar]

La ley de Boyle se usa a menudo como parte de una explicación sobre cómo funciona el sistema de respiración en el cuerpo humano. Esto comúnmente implica explicar cómo el volumen pulmonar puede aumentar o disminuir y, por lo tanto, causar una presión de aire relativamente más baja o más alta dentro de ellos (de acuerdo con la ley de Boyle). Esto forma una diferencia de presión entre el aire dentro de los pulmones y la presión del aire ambiental, que a su vez precipita la inhalación o la exhalación a medida que el aire se mueve de alta a baja presión.[14]

Véase también[editar]

Referencias[editar]

  1. In 1662, he published a second edition of the 1660 book New Experiments Physico-Mechanical, Touching the Spring of the Air, and its Effects with an addendum Whereunto is Added a Defence of the Authors Explication of the Experiments, Against the Obiections of Franciscus Linus and Thomas Hobbes; see J Appl Physiol 98: 31–39, 2005. (Jap.physiology.org Online.)
  2. Véase:
    • Henry Power, Experimental Philosophy, in Three Books … (London: Printed by T. Roycroft for John Martin and James Allestry, 1663), pp. 126–130. Available on-line at: Early English Books Online. En la página 130, Power presenta (no muy claramente) la relación entre la presión y el volumen de una cantidad dada de aire: "Que la medida del Patrón Mercurial, y el Complemento Mercurial, se miden mediante sus alturas perpendiculares, sobre la Superficie del Mercurio reposado en el Recipiente: Pero Ayr, la dilatación del Ayr, y el Ayr dilatado, por los espacios que llenan. Así que ahora hay cuatro proporcionales, y mediante cualquiera de los tres, se puede eliminar el cuarto, por conversión, transposición, y división de ellos. De modo que por estas analogías usted puede pronosticar los efectos, que siguen en todos los experimentos mercuriales, y predecir por cálculo, antes de que los sentidos observen el desplazamiento de los mismos". En otras palabras, si se conoce el volumen V1 ("Ayr") de una cantidad dada de aire a la presión p1 ("estándar de Mercurio", es decir, la presión atmosférica a baja altitud), entonces se puede predecir el volumen V2 (" Ayr dilatado") de la misma cantidad de aire a la p2 ("complemento mercurial", es decir, presión atmosférica a mayor altura) mediante una proporción (porque p1 V1 = p2 V2).
    • Charles Webster (1965). "The discovery of Boyle's law, and the concept of the elasticity of air in seventeenth century," Archive for the History of Exact Sciences, 2 (6) : 441–502; see especially pp. 473–477.
    • Charles Webster (1963). "Richard Towneley and Boyle's Law," Nature, 197 (4864) : 226–228.
    • Robert Boyle acknowledged his debts to Towneley and Power in: R. Boyle, A Defence of the Doctrine Touching the Spring and Weight of the Air, … (London, England: Thomas Robinson, 1662). Available on-line at: Spain's La Biblioteca Virtual de Patrimonio Bibliográfico. On pages 50, 55–56, and 64, Boyle cited experiments by Towneley and Power showing that air expands as the ambient pressure decreases. On p. 63, Boyle acknowledged Towneley's help in interpreting Boyle's data from experiments relating the pressure to the volume of a quantity of air. (Also, on p. 64, Boyle acknowledged that Lord Brouncker had also investigated the same subject.)
  3. Gerald James Holton (2001). Physics, the Human Adventure: From Copernicus to Einstein and Beyond. Rutgers University Press. pp. 270-. ISBN 978-0-8135-2908-0. 
  4. R. Boyle, A Defence of the Doctrine Touching the Spring and Weight of the Air, … (London: Thomas Robinson, 1662). Available on-line at: Spain's La Biblioteca Virtual de Patrimonio Bibliográfico. Boyle presents his law in "Chap. V. Two new experiments touching the measure of the force of the spring of air compress'd and dilated.", pp. 57–68. On p. 59, Boyle concludes that " … the same air being brought to a degree of density about twice as that it had before, obtains a spring twice as strong as formerly." That is, doubling the density of a quantity of air doubles its pressure. Since air's density is proportional to its pressure, then for a fixed quantity of air, the product of its pressure and its volume is constant. On page 60, he presents his data on the compression of air: "A Table of the Condensation of the Air." The legend (p. 60) accompanying the table states: "E. What the pressure should be according to the Hypothesis, that supposes the pressures and expansions to be in reciprocal relation." On p. 64, Boyle presents his data on the expansion of air: "A Table of the Rarefaction of the Air."
  5. The Boyle Papers BP 9, fol. 75v–76r at BBK.ac.uk (enlace roto disponible en este archivo).
  6. The Boyle Papers, BP 10, fol. 138v–139r at BBK.ac.uk (enlace roto disponible en este archivo).
  7. a b c Scientists and Inventors of the Renaissance. Britannica Educational Publishing. 2012. pp. 94-96. ISBN 978-1615308842. 
  8. Véase:
    • Mariotte, Essais de Physique, ou mémoires pour servir à la science des choses naturelles, … (Paris, France: E. Michallet, 1679); "Second essai. De la nature de l'air".
    • (Mariotte, Edmé), Oeuvres de Mr. Mariotte, de l'Académie royale des sciences; … , vol. 1 (Leiden, Netherlands: P. Vander Aa, 1717); see especially pp. 151–153.
    • Mariotte's essay "De la nature de l'air" was reviewed by the French Royal Academy of Sciences in 1679. See: (Anon.) (1733) "Sur la nature de l'air," Histoire de l'Académie Royale des Sciences, 1 : 270–278.
    • Mariotte's essay "De la nature de l'air" was also reviewed in the Journal des Sçavans (later: Journal des Savants) on 20 November 1679. See: (Anon.) (20 November 1679) "Essais de physique, … ," Journal des Sçavans, pp. 265–269.
  9. Ley, Willy (June 1966). «The Re-Designed Solar System». For Your Information. Galaxy Science Fiction: 94-106. 
  10. Principia, Sec. V, prop. XXI, Theorem XVI
  11. Ercilla, Santiago Burbano de; Muñoz, Carlos Gracia (1 de enero de 2003). Física general. Editorial Tebar. ISBN 9788495447821. Consultado el 16 de febrero de 2017. 
  12. Levine, Ira. N. (1978), pág. 12 da la definición original.
  13. Atkins, Peter William; Jones, Loretta (1 de enero de 2006). Principios de química: los caminos del descubrimiento. Ed. Médica Panamericana. ISBN 9789500600804. Consultado el 16 de febrero de 2017. 
  14. Gerald J. Tortora, Bryan Dickinson, 'Pulmonary Ventilation' in Principles of Anatomy and Physiology 11th edition, Hoboken: John Wiley & Sons, Inc., 2006, pp. 863–867

Bibliografía[editar]

  • Greiner, Walter; Neise, Ludwig; Stöcker, Horst (1997). Thermodynamics and Statistical Mechanics, Springer. ISBN 0-3-87-942998.
  • Levine, Ira N. (1978). Physical Chemistry', University of Brooklyn: Mcgraw-Hill.