Intersección de conjuntos

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda

subtema de conjuntos basica primaria

La intersección de A y B es otro conjunto A B que contiene sólo los elementos que pertenecen tanto a A como a B.

En teoría de conjuntos, la intersección de dos (o más) conjuntos es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos de partida. Por ejemplo, dado el conjunto de los números pares P y el conjunto de los cuadrados C de números naturales, su intersección es el conjunto de los cuadrados pares D:

Error al representar (error de sintaxis): {\displaystyle C = \{1, 4, 9, 16, 2 En otras palabras: Así, por ejemplo, si A = { a, b, c, d, e, f} y B = { a, e, i, o, u}, entonces la intersección de dichos conjuntos estará formada por todos los elementos que estén a la vez en los dos conjuntos, esto es: A{{math|{{unicode|∩}}|}}B = { a, e} La intersección de conjuntos se denota por el símbolo {{math|{{unicode|∩}}|}} por lo que {{math|1=''D'' = ''P'' {{unicode|∩}} ''C''}}. == Definición == [[Archivo:SetIntersection.svg|thumb|280px|Intersección de dos [[conjunto]]s {{math|''A''}} y {{math|''B''}}.]] Dados dos conjuntos {{math|''A''}} y {{math|''B''}}, su intersección es otro subconjunto cuyos elementos, necesariamente, pertenecen a los ''c''}|}} y {{math|''B'' {{=}} {''ω'', ''c'', 0, Δ, 5, ''R''}|}}. Entonces la intersección es {{math|''A'' {{unicode|∩}} ''B'' {{=}} {5, ''c''}|}}. *Sean los conjuntos de números naturales {{math|''C'' {{=}} {''n'': ''n'' es una [[potenciación|potencia]] de 2}|}} y {{math|''D'' {{=}} {''n'': ''n'' es un [[cubo (álgebra)|cubo]]}|}}. Su intersección es {{math|''C'' {{unicode|∩}} ''D'' {{=}} {''n'': ''n'' es una potencia de 2 y un cubo} {{=}} {''n'': ''n'' es una potencia de 2 cuyo [[exponente]] es [[múltiplo]] de 3} {{=}} {8, 64, 512, ...}|}}. *Sean los conjuntos de números [[número par|pares]] e [[impar]]es. Su intersección es el [[conjunto vacío]] {{unicode|∅}}, ya que no existe ningún número natural que sea par e impar a la vez. Cuando la intersección de dos conjuntos es vacía, se dice que son [[disjuntos]]: {{definición|1=Dos conjuntos {{math|''A''}} y {{math|''B''}} se dicen '''disjuntos''' si su intersección es el conjunto vacío: {{ecuación|1=<math>A\cap B=\varnothing} }}

}}

Generalizaciones[editar]

La intersección de un número finito de conjuntos, superior a dos, se define teniendo en cuenta que, debido a la propiedad asociativa (más abajo), el orden en el que se intersequen los conjuntos es irrelevante:

La definición más general en teoría de conjuntos se refiere a una familia de conjuntos, un conjunto cuyos elementos son conjuntos a su vez:

Sea M una familia de conjuntos. Su intersección M se define como:

De este modo, la intersección de un número finito de conjuntos es sólo un caso particular de esta definición general:

A B = M, donde M = {A, B}
A1 ... An = M, donde M = {A1, ..., An}

La intersección general de conjuntos se denota de diversas maneras:

donde esta última se aplica en el caso de que utilicemos un conjunto índice, definiendo M como {Ai: i I}.

Propiedades[editar]

De la definición de intersección puede deducirse directamente:

  • Idempotencia. La intersección de un conjunto A consigo mismo es el propio A :
  • La intersección de A y B es un subconjunto de ambos:
  • La intersección de un conjunto B con un conjunto A que lo contenga, deja a B inalterado:

La intersección de conjuntos poseen también propiedades similares a las operaciones con números:

  • Propiedad asociativa. La intersección de los conjuntos A y B C es igual a la intersección de los conjuntos A B y C :
  • Propiedad conmutativa. La intersección de los conjuntos A y B es igual a la intersección de los conjuntos B y A :

Todas estas propiedades se deducen de propiedades análogas para la conjunción lógica.

En relación con la operación de unión existen unas leyes distributivas:

Propiedad distributiva

  • A (B C) = (A B) (A C), y por tanto:
    • A (A B) = A
  • A (B C) = (A B) (A C), y por tanto:
    • A (A B) = A
  • Se cumple que ∅ ⊂ A∩B∩C ⊂ A∩B ⊂ A ⊂ A∪B ⊂ A∪B∪C ⊂ Ω donde Ω es el conjunto universal.[1]

Teoría axiomática[editar]

En las teorías axiomáticas de conjuntos usuales, como ZFC o NBG, la existencia de la intersección de una familia de conjuntos no se postula de manera independiente, sino que se demuestra como consecuencia del esquema axiomático de reemplazo.

Véase también[editar]

Referencias[editar]

  1. Rojo. Álgebra I

Literatura del tema[editar]

  • Dorronsoro, José; Hernández, Eugenio (1996). Números, grupos y anillos. Addison-Wesley/Universidad Autónoma de Madrid. ISBN 84-7829-009-5. 
  • Lipschutz, Seymour (1991). Teoría de conjuntos y temas afines. McGraw-Hill. ISBN 968-422-926-7. 
  • Yu. M. Korshunov. Fundamentos matemáticos de la cibernética. Editorial Mir, Moscú s/f.