Funtor exacto

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En álgebra homológica, un funtor exacto es un funtor de una categoría abeliana a otra que preserva sucesiones exactas.

Definición formal[editar]

Sea A y C categorías abelianas y sea :F: AC un funtor, sea :0ABC0 una sucesión exacta corta de objetos de A entonces F es exacto si 0F(C)F(B)F(A)0 es de nuevo una sucesión exacta.

Otras definiciones relativas a el funtor F son:

  • semi-exacto si F(A)F(B)F(C) es una sucesión exacta.
  • exacto izquierdo si 0F(A)F(B)F(C) es una sucesión exacta.
  • exacto derecho si F(A)F(B)F(C)0 es una sucesión exacta.
  • De hecho no es necesario empezar siempre con una sucesión exacta para garantizar ciertas propiedades del funtor F, se demuestra que son equivalente las siguientes definiciones.
  • F es un funtor exacto si ABC es una sucesión exacta entonces F(A)F(B)F(C) es una sucesión exacta.
  • F es un funtor exacto izquierdo si 0ABC es una sucesión exacta enntonces 0F(A)F(B)F(C) es una sucesión exacta.
  • F es un funtor exacto derecho si ABC0 es una sucesión exacta entonces F(A)F(B)F(C)0 es una sucesión exacta.

Ejemplos[editar]

  • El ejemplo más importante de funtor exacto izquierdo es el funtor Hom. Si A es una categoría abeliana y A es un objeto de A entonces FA(X) = HomA(A,X) es un funtor de A en Ab (la categoría de grupos abelianos este funtor es un funtor exacto izquierdo F es exacto si y solo si A es proyectivo. El funtor GA(X) = HomA(X,A) es un funtor de Aop en Ab también es un funtor exacto derecho y es exacto si y solo si A es inyectivo.
  • Si K es un campo y V es un espacio vectorial sobre K sea V* = Homk(V,k), con lo que obtenemos un funtor exacto de la categoría de K-Vec (la categoría de espacios vectoriales en sí misma. (la exactitud se debe a que K es un espacio vectorial inyectivo). De forma alterna uno puede argumentar que toda sucesión exacta corta de K-espacios vectoriales se factoriza y que cualquier funtor aditivo envía sucesiones factorizadas en sucesiones factorizadas).
  • Si X es una espacio topológico, podemos considerar la categoría de gavillas de grupos abelianos en X. El funtor que asocia a cada gavilla G el grupo de secciones globales G(X) es exacto izquierdo.

Si A y B son dos categorías abelianas, podemos considerar la categoría de funtores BA cuyos objetos son funtores de A en B y los morfismos entre dos objetos son transformaciones naturales entonces tenemos un funtor EA de BA a B evaluando funtores en A. Este funtor 'EA es exacto.

Algunos hechos[editar]

Un funtor (no necesariamente aditivo) es exacto izquierdo si y solo si lleva límites finitos en límites. Análogamente un funtor (no necesariamente aditivo) es exacto derecho si y solo si lleva colimites finitos en colimites.

El grado con el cual un funtor exacto izquierdo falla de ser exacto puede ser medido con sus funtores derivados derechos y el grado con el cual un funtor exacto derecho falla de ser exacto puede ser medido con sus funtores derivados izquierdos.

Existe un teorema que nos asegura que si F y G son funtores y F es adjunto izquierdo de G entonces F es exacto derecho y G es exacto izquierdo.


Referencias[editar]