Frontera Bekenstein

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda

En física, la frontera Bekenstein o límite de Bekenstein es un límite superior a la entropía S, o información I, que pueden estar contenidos en una región finita del espacio que tiene también una cantidad finita de energía, o también, la cantidad máxima de información necesaria para describir perfectamente a un sistema físico hasta el nivel cuántico.[1]​ Esto implica que la información de un sistema físico, o la información necesaria para describirlo perfectamente, debe ser finita si esa región del espacio y la energía son finitos. En ciencias de la computación, implica que existe una tasa de procesamiento de la información máxima (límite de Bremermann) para un sistema físico que tiene un tamaño y energía finitos, y que una máquina de Turing con dimensiones físicas finitas y memoria ilimitada no es físicamente posible.

La frontera Bekenstein limita la cantidad de información que se puede almacenar dentro de un volumen esférico a la entropía de un agujero negro con la misma superficie.

Ecuaciones[editar]

La forma universal del límite fue encontrada originalmente por Jacob Bekenstein como la desigualdad[2]

donde es la entropía, es la constante de Boltzmann, es el radio de una esfera que puede encerrar a un sistema dado, es el total de masa-energía incluyendo cualquier masa residual, es la constante reducida de Planck, y es la velocidad de la luz. Hay que notar que aunque la gravedad juega un papel importante, la expresión del límite no contiene la constante de Newton .

En términos computacionales, el límite está dado por:

donde es la información expresada en número de bits contenidos en los estados cuánticos de la esfera. El factor procede de la definición de la información como el logaritmo base 2 del número de estados cuánticos.[3]​ Usando la equivalencia masa-energía, el límite informativo puede reformularse como

donde es la masa del sistema en kilogramos y el radio en metros.

Ejemplos[editar]

Agujeros negros[editar]

Sucede que la entropía Bekenstein-Hawking de agujeros negros tridimensionales satura exactamente el límite

donde es el área bidimensional del horizonte de sucesos del agujero negro en unidades del área de Planck, .

La frontera está estrechamente relacionado con la termodinámica de los agujeros negros, el principio holográfico y la frontera de entropía covariante de la gravedad cuántica, y se puede derivar por una precisa conjetura de esta última.

Cerebro humano[editar]

El cerebro humano promedio tiene una masa de 1,5 kg y un volumen de 1260 cm³. Si el cerebro se aproximara por una esfera entonces el radio será 6,7 cm. La frontera Bekenstein asociada es bits y representa el máximo de información necesaria para recrear perfectamente un cerebro humano promedio a nivel cuántico. Esto significa que el número de los estados del cerebro humano debe ser inferior a .

La existencia de la frontera de Bekenstein implica que la capacidad de almacenamiento de cerebro humano es finito, aunque potencialmente muy grande; acotado solo por los límites físicos . Según esto tendríamos que la transferencia mental sería posible desde el punto de vista de la mecánica cuántica, a condición de que el fisicalismo sea cierto.

Véase también[editar]

Enlaces externos[editar]

Referencias[editar]

  1. Jacob D. Bekenstein, "Universal upper bound on the entropy-to-energy ratio for bounded systems" , Physical Review D, Vol. 23, No. 2, (January 15, 1981), pp. 287-298,
  2. Jacob D. Bekenstein, "Bekenstein bound", Scholarpedia, Vol. 3, No. 10 (October 31, 2008), p. 7374, doi:10.4249/scholarpedia.7374.
  3. Frank J. Tipler, "The structure of the world from pure numbers", Reports on Progress in Physics, Vol. 68, No. 4 (April 2005), pp. 897-964, doi:10.1088/0034-4885/68/4/R04, Bibcode: 2005RPPh...68..897T, p. 902. Mirror link. Also released as "Feynman-Weinberg Quantum Gravity and the Extended Standard Model as a Theory of Everything", arXiv:0704.3276, April 24, 2007, p. 8.