Friso (matemáticas)

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Greca

En matemáticas, un friso es cada uno de los recubrimientos de un región del plano delimitada por dos rectas paralelas , y por tanto, es una región longitudinal de un cierto ancho y de longitud infinita,[1]​ obtenidos mediante reiterados movimientos del plano sobre dicha región a recubrir, dependiendo del tipo de friso que se quiera generar.[2]

Clasificación[editar]

Movimientos principales del friso y su composición:

  • Todo friso tiene que ser invariante a una determinada traslación de vector ,
FrisoMuestra1.svg
  • Friso que incluye el giro o rotación de 180º,
FrisoMuestra3.svg
  • Friso que incluye una simetría transversal, , es decir, perpendicul.svg|200px]]:*Friso que incluye la simetría longitudinal seguida de una traslación de vector ,
FrisoMuestra5.svg
  • Friso que incluye las dos simetrías anteriores: y
FrisoMuestra7.svg
  • Friso que incluye una simetría longitudinal,
FrisoMuestra2.svg
  • Friso que además de la simetría longitudinal incluye la simetría transversal.
FrisoMuestra6.svg

Muestras[editar]

Véase también[editar]

Usos de friso en diferentes áreas como ornamento.

El recubrimiento que no deja huecos es el teselado.

Notas y referencias[editar]

  1. Jaime, A.; Gutiérrez, A. (1996): El grupo de las isometrías del plano. Ed. Síntesis, Madrid.
  2. El friso como abstracción matemática contempla todos los aspectos de lo que recubre, es decir, desde los bordes del elemento hasta la composición constructiva que porta o representa, independientemente del relieve ya que no hay grosor.

Enlaces externos[editar]