Estructura algebraica

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 19:26 22 nov 2015 por Jarould (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Ir a la navegación Ir a la búsqueda

En álgebra abstracta, una estructura algebraica, también conocida como sistema algebraico,[1]​ es una n-tupla (a1, a2, ..., an), donde a1 es un conjunto dado no vacío, y {a2, ..., an} un conjunto de operaciones aplicables a los elementos de dicho conjunto.

Principales estructuras algebraicas

Las estructuras algebraicas se clasifican según las propiedades que cumplen las operaciones sobre el conjunto dado. En estructuras algebraicas más elaboradas, se definen además varias leyes de composición.

Plantilla:Estructuras algebraicas, una ley de composición Con una ley de composición interna


EstructuraAlgebraica2.svgEstructura algebraicaLey de composiciónGrupo abelianoDistributividadAsociatividad (álgebra)Elemento neutroElemento simétricoAnillo (matemática)Anillo unitarioCuerpo (matemáticas)
Acerca de esta imagen


Con dos leyes de composición interna


Con leyes de composición interna y externa

Referencias

  1. Sigler, L.E. (1981), Álgebra (1ª. edición), Barcelona: Editorial Reverté, p. 476, ISBN 9788429151299 .

Bibliografía

  • Adler, Irving (1970). La Nueva Matemática. Buenos Aires: Editorial Universitaria de Buenos Aires, Colección Ciencia Joven, 288 páginas, en rústica. Traducción del inglés: Jorge Jáuregui. Original: The New Mathematics, The John Day Company, New York. ISBN 0-381-98002-2. 
  • Birkhoff, Garrett; MacLane, Saunders (1963). Álgebra Moderna. Barcelona: Vicens-Vives. ISBN 978-0828403306. 
  • Kurosch, A. G. (1981). Álgebra superior (4 edición). Moscú: Mir. ISBN 9681849388.