Diferencia entre revisiones de «Ecuación algebraica»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
X2y3 (discusión · contribs.)
X2y3 (discusión · contribs.)
Línea 142: Línea 142:
* Si una ecuación de grado n, con coeficientees reales, tiene como raíz el número complejo <math> z= a+bi</math> entonces el conjugado de z<sup>*</sup> es también raíz de tal ecuación; siendo <math> z^{*} = a-bi</math>. <ref>Sullivan. Op. cit.</ref>
* Si una ecuación de grado n, con coeficientees reales, tiene como raíz el número complejo <math> z= a+bi</math> entonces el conjugado de z<sup>*</sup> es también raíz de tal ecuación; siendo <math> z^{*} = a-bi</math>. <ref>Sullivan. Op. cit.</ref>
* Una ecuación algebraica, usando solo el campo de los números reales, se puede factorizar en factores lineales <math> x-\alpha_i</math> y factores cuadráticos de la forma <math> mx^2 + nx +p</math> que resulta del producto de cada par de raíces complejas.<ref>Kúrosch: Álgebra superior</ref>
* Una ecuación algebraica, usando solo el campo de los números reales, se puede factorizar en factores lineales <math> x-\alpha_i</math> y factores cuadráticos de la forma <math> mx^2 + nx +p</math> que resulta del producto de cada par de raíces complejas.<ref>Kúrosch: Álgebra superior</ref>

* Cuando una ecuación algebraica de coeficientes racionales tiene una raíz real de la forma <math> p+\sqrt{q} </math>, entonces tiene también el número real <math> p+\sqrt{q} </math>. <ref>Charles Lehman. ''Álgebra superior''</ref>


== Véase también ==
== Véase también ==

Revisión del 16:13 11 oct 2015

Las soluciones de una ecuación algebraica de una variable corresponden a los puntos de una curva, que «tocan o cortan» al eje horizontal.

En la matemática, especialmente en el álgebra, una ecuación algebraica de grado superior es una ecuación de la forma P(x) = 0 donde P(x) es un polinomio no nulo ni constante, con coeficientes enteros, cuyo grado se supone n ≥ 2. [1][2]​. Donde x denota un número real o complejo desconocido que la satisface, esto es que reemplazado en P(x) da cero como resultado. Cualquier número que satisface la ecuación se llama raíz; el problema de resolver una ecuación significa hallar todas sus raíces. Cuando el grado del polinomio es n se dice que la ecuación correspondiente es de grado n. [3]

Por ejemplo, el polinomio con coeficientos enteros

determina la ecuación , es decir, . Las resolución de esta ecuación determina las raíces de la ecuación, las cuales se interpretan geométricamente como sigue.

La gráfica de la función polinómica es una curva, donde los ceros del polinomio son las abscicas de los puntos de la curva donde corta al eje Ox o es tangente al mismo [4]​.



Historia

Ecuaciones de una incógnita

Ejemplos

  • Ecuación cúbica:

, con una raíz real y dos complejas conjugadas

  • Ecuación de quinto grado:

tiene cinco raíces, tres reales y dos complejas; ninguna se puede expresar mediante radicales; caso de ecuación «irresoluble por radicales»

[5]

  • Ecuación de séptimo grado:

tiene por lo menos una raíz positiva

  • Ecuación de sexto grado:

detenta una raíz positiva y otra negativa

Contraejemplos

Ecuaciones que no son algebraicas:

, los coeficientes no son números enteros; se puede usar la fórmula de la ecuación completa de grado 2.

, los coeficientes no son enteros; sin embargo la teoría considera que tiene tres raíces en ℂ.

, involucra una función trascendente

, conlleva la función , que no es un polinomio.

[6]

Consideraciones genéricas

Según los valores que asuma surgen las ecuaciones de la forma

de grado 1, 2, 3, 4, etc. o ecuaciones lineal, cuadrática, cúbica, cuártica, etc. Se asume que el coeficiente principal es distinto de cero; aunque ninguna condición se establece para los demás coeficientes. [7]

Resolver ecuaciones algebraicas de una sola variable es relativamente sencillo para los grados 1 y 2.

Factorización

Si k es una raíz de la ecuación

se deduce del teorema del resto que P(x)es divisible por (x-k) y se cumple

donde es un polinomio de grado n-1.

Si es otra raíz distinta de k se obtiene

donde es un polinomio de grado n-2. Y así sucesivamente.

Primer grado

Segundo grado

Una ecuación de segundo grado

no siempre admite solución sobre , aunque sí la admite sobre su clausura algebraica (si se trata de un cuerpo de característica nula). Existen a lo sumo dos soluciones, dadas por:

Puede ser que alguna de las soluciones anteriores, definibles sobre la clausura algebraica no son números del cuerpo . Por ejemplo la ecuación:

No admite solución sobre pero sí la admite sobre su clausural algebraica y también sobre (ya que contiene a la clausura algebraica de ).

Ecuaciones de mayor grado

Para ecuaciones de tercer y cuato grado también pueden construirse las soluciones de la ecuación sobre la clausura algebraica de mediante el método de los radicales. Esto fue anticipado por Gerolamo Cardano, Tartaglia y Lodovico Ferrari, entre otros, en el siglo XVI. Sin embargo, para grado 5 o mayor, no tiene por qué existir una solución construible mediante el método de radicales, hecho probado por Évariste Galois a principios del siglo XIX.[8]

Conversión de coeficientes

Una ecuación algebraica en el cuerpo de los racionales siempre puede convertirse en una ecuación con coeficientes enteros. Por ejemplo, tomemos la ecuación de tercer grado:

multiplicando por tres toda la ecuación tenemos:

La forma estándar de este tipo de ecuación, sin embargo, tiene un coeficiente unitario al principio:

Si todos los otros coeficientes son enteros, entonces las raíces de la ecuación son enteros algebraicos.

Ecuaciones binomias

La ecuación tiene una raíz igual a k, para cualquier natural mayor que 1 y c, entero.

La ecuación , detenta una raíz igual a -c para n natural par.

La ecuación posee una raíz igual a -c para cualquier n, natural impar.

[9]

Ecuaciones vinculadas

  • Si todas las soluciones de F=0 son soluciones de la ecuación G=0 se dice que esta es consecuencia de la anterior.

Por ejemplo, la ecuación

es consecuencia de la ecuación

.

En otros términos, si el conjunto solución de la ecuación F = 0 es parte del conjunto solución de la ecuación G = 0, esta es consecuencia de la ecuación F = 0.

  • Si todas las soluciones de F=0 son soluciones de la ecuación G=0 y recíprocamente se dicen que las dos ecuaciones son equivalentes.

Como ejemplo, la ecuación

y la ecuación

son equivalentes; sus conjuntos solución son iguales.

  • Se indican ciertas ecuaciones equivalentes y ecuación consecuencia de otra
  1. La ecuación F+G=G es equivalente a la ecuación F = 0.
  2. F/G = 0 es equivalente a la ecuación F = 0
  3. FG = 0 es equivalente a las dos ecuaciones F= 0 y G = 0.
  4. La ecuación Fn = 0 es consecuencia de la ecuación F=0, donde n es entero positivo mayor que 2.
  5. La ecuación Fn = Gn es equivalente a la ecuación F = G si n es impar; y equivalente a las ecuaciones F=G y F= -G si n es par. [10]

Proposiciones

  • De acuerdo al Teorema fundamental del álgebra toda ecuación algebraica definida por un polinomio de grado n, tiene al menos una raíz en el conjunto ℂ de los números complejos.[11]
  • Como aplicación del TFA, toda ecuación algebraica de grado n se puede descomponer en n binomios lineales , siendo una raíz, que pudiera ser múltiple en algún caso. [12]
  • Si una ecuación de grado n, con coeficientees reales, tiene como raíz el número complejo entonces el conjugado de z* es también raíz de tal ecuación; siendo . [13]
  • Una ecuación algebraica, usando solo el campo de los números reales, se puede factorizar en factores lineales y factores cuadráticos de la forma que resulta del producto de cada par de raíces complejas.[14]
  • Cuando una ecuación algebraica de coeficientes racionales tiene una raíz real de la forma , entonces tiene también el número real . [15]

Véase también

Referencias

  1. Concordado con Sullivan en Precálculo, quien habla de ceros de un polinomio
  2. A.G. Kurosch: Ecuaciones algebraicas de grados arbitrarios.
  3. Kurosch. Op. cit.
  4. A. G. Kurosch: Álgebra superior. Editorial Mir Moscú varias ediciones
  5. Kurosch. Op. cit. pág 22
  6. Cotejados con Álgebra superior de Albert Adrian y Análisis Matemático de Haaser- La Salle-Sulivan
  7. Uspensky. Libro mencionado
  8. Sullivan, J. (2006). «Polinomios y funciones racionales». Álgebra y Trigonometria (7ª edición). Pearson Educación. p. 374. ISBN 9789702607366. 
  9. Tsipkin: Manual de matemáticas
  10. Gustafson. álgebra intermedia. ISBN 970-686-553-5
  11. Alfhors: Complex Variable
  12. Leithold. Álgebra superior
  13. Sullivan. Op. cit.
  14. Kúrosch: Álgebra superior
  15. Charles Lehman. Álgebra superior