Diferencia entre revisiones de «Ciencia»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Reordeno una sección
Quito oración de la intro que no corresponde aquí, y la paso al artículo Científico
Línea 4: Línea 4:


La ciencia considera y tiene como fundamento la [[observador|observación]] experimental. Este tipo de observación se organiza por medio de métodos, modelos y teorías con el fin de generar nuevo conocimiento. Para ello se establecen previamente unos [[criterios de verdad]] y un método de investigación. La aplicación de esos métodos y conocimientos conduce a la generación de nuevos conocimientos en forma de predicciones concretas, cuantitativas y comprobables referidas a observaciones pasadas, presentes y futuras. Con frecuencia esas predicciones se pueden formular mediante razonamientos y estructurar como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.
La ciencia considera y tiene como fundamento la [[observador|observación]] experimental. Este tipo de observación se organiza por medio de métodos, modelos y teorías con el fin de generar nuevo conocimiento. Para ello se establecen previamente unos [[criterios de verdad]] y un método de investigación. La aplicación de esos métodos y conocimientos conduce a la generación de nuevos conocimientos en forma de predicciones concretas, cuantitativas y comprobables referidas a observaciones pasadas, presentes y futuras. Con frecuencia esas predicciones se pueden formular mediante razonamientos y estructurar como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.

En un sentido más restringido, un [[científico]] es un individuo que utiliza el [[método científico]].<ref>{{Cita libro |apellidos=Whewell |nombre=William |título=Philosophy of the Inductive Sciences |año=1840 |idioma=inglés |título-trad=Filosofía de las ciencias inductivas}}</ref><ref>{{Cita libro |apellidos=Newton |nombre=Isaac |enlaceautor=Isaac Newton |título=Philosophiae Naturalis Principia Mathematica |año=1726 |edición=3ra |capítulo=Rules for the study of natural philosophy |año-original=1687}}</ref>


== Método científico ==
== Método científico ==

Revisión del 03:54 22 mar 2019

Alegoría de la Ciencia. Óleo sobre tela de Sebastiano Conca.

La ciencia (del latín scientĭaconocimiento’) es un sistema ordenado de conocimientos estructurados que estudia, investiga e interpreta los fenómenos naturales, sociales y artificiales.[1]​ El conocimiento científico se obtiene mediante observación y experimentación en ámbitos específicos. Dicho conocimiento es organizado y clasificado sobre la base de principios explicativos, ya sean de forma teórica o práctica. A partir de estos se generan preguntas y razonamientos, se construyen hipótesis, se deducen principios y se formulan teorías científicas, leyes científicas y sistemas organizados por medio de un método científico.[2]

La ciencia considera y tiene como fundamento la observación experimental. Este tipo de observación se organiza por medio de métodos, modelos y teorías con el fin de generar nuevo conocimiento. Para ello se establecen previamente unos criterios de verdad y un método de investigación. La aplicación de esos métodos y conocimientos conduce a la generación de nuevos conocimientos en forma de predicciones concretas, cuantitativas y comprobables referidas a observaciones pasadas, presentes y futuras. Con frecuencia esas predicciones se pueden formular mediante razonamientos y estructurar como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.

Método científico

Modelo simplificado para el método científico.

El método científico es una metodología para obtener nuevos conocimientos, de la ciencia y que consiste en la observación sistemática, medición, experimentación y la formulación, análisis y modificación de hipótesis.[3]​ Las principales características de un método científico válido son la falsabilidad y la reproducibilidad y repetibilidad de los resultados, corroborada por revisión por pares. Algunos tipos de técnicas o metodologías utilizadas son la deducción,[4]​ la inducción, la abducción, y la predicción, entre otras.

El método científico abarca las prácticas aceptadas por la comunidad científica como válidas a la hora de exponer y confirmar sus teorías. Las reglas y principios del método científico buscan minimizar la influencia de la subjetividad del científico en su trabajo, reforzando así la validez de los resultados y, por ende, del conocimiento obtenido.

No todas las ciencias tienen los mismos requisitos. La experimentación, por ejemplo, no es posible en ciencias como la física teórica. El requisito de reproducibilidad y repetibilidad, fundamental en muchas ciencias, no se aplica a otras, como las ciencias humanas y sociales, donde los fenómenos no solo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, por ejemplo, la historia.

Así mismo, no existe un único modelo de método científico.[5]​ El científico puede usar métodos definitorios, clasificatorios, estadísticos, empírico-analíticos, hipotético-deductivos, procedimientos de medición, entre otros. Por esto, referirse a el método científico, es referirse a un conjunto de tácticas empleadas para construir conocimiento de forma válida. Estas tácticas pueden ser mejoradas, o reemplazadas por otras, en el futuro.[6]​ Cada ciencia, y aun cada tipo de investigación concreta, puede requerir un modelo propio de método científico.

En las ciencias empíricas no es posible la verificación; es decir, no existe el «conocimiento perfecto» o «probado». Cada teoría científica permanece siempre abierta a ser refutada. En las ciencias formales las deducciones o demostraciones matemáticas generan pruebas únicamente dentro del marco del sistema definido por ciertos axiomas y ciertas reglas de inferencia.[7]

Clasificación de las ciencias

Busto de Aristóteles en el Museo del Louvre.

Hasta el Renacimiento todo el saber que no fuera técnico o artístico se situaba en el ámbito de la filosofía. El conocimiento de la naturaleza era sobre la totalidad: una ciencia universal. Aristóteles usó los términos episteme y philosophia para clasificar las ciencias, pero con un significado y contenido muy diferente al de «ciencia» en la actualidad.[8]​ que considera tres categorías del saber:

  • Teoría, que busca la verdad de las ideas, como formas y como sustancias. Este saber está constituido por las ciencias cuyo conocimiento está basado en el saber por el saber: Matemáticas, Física y Metafísica.
  • Praxis o saber práctico encaminado al logro de un saber para guiar la conducta hacia una acción propiamente humana en cuanto racional: lo formaban la Ética, la Política, la Económica y la Retórica.
  • Poiesis o saber creador, saber poético, basado en la transformación técnica. Lo que hoy día se englobaría en la creación artística, artesanía y la producción de bienes materiales.

La clasificación aristotélica sirvió de fundamento para todas las clasificaciones que se hicieron en la Edad Media[9]​ hasta el Renacimiento, cuando las grandes transformaciones promovidas por los grandes adelantos técnicos[10]​ plantearon la necesidad de nuevas ciencias y sobre todo nuevos métodos de investigación que culminarán en la ciencia moderna del siglo XVII. Entonces aparece un concepto moderno de clasificación que supone la definitiva separación entre ciencia y filosofía.

En la Edad Moderna, Campanella, Comenio, Bacon, Hobbes y Locke propusieron diferentes clasificaciones.[8]​ El Systema Naturae (1735), de Linneo, estableció los criterios de clasificación que más influencia han tenido en el complejo sistema clasificatorio de las ciencias naturales.[8]André-Marie Ampère confeccionó una tabla con quinientas doce ciencias.[11]

En la Ilustración, D'Alembert escribió:

No hay sabios que gustosamente no colocaran la ciencia de la que se ocupan en el centro de todas las ciencias, casi en la misma forma que los hombres primitivos se colocaban en el centro del mundo, persuadidos de que el universo había sido creado por ellos. Las profesiones de muchos de estos sabios, examinándose filosóficamente, encontrarían, posiblemente, incluso, además del amor propio, causas de peso suficiente para su justificación.
D'Alembert[12]

En el siglo XIX, Auguste Comte hizo una clasificación, mejorada después por Antoine Augustin Cournot en 1852 y por Pierre Naville en 1920.[11]​ Comte basó su clasificación jerárquica en el orden en que las ciencias habían entrado, según su percepción, en estado positivo, así como en su complejidad creciente y generalización decreciente.[13]​ De esta forma ordenó a las ciencias:[14]

Comte justifica la inclusión de la sociología en la clasificación, de la siguiente forma:

Poseemos ahora una física celeste, una física terrestre ya mecánica o química, una física vegetal y una física animal; todavía necesitamos una más y la última, la física social, para completar el sistema de nuestro conocimiento de la naturaleza.
Auguste Comte[15]

A partir del siglo XIX y con el importante crecimiento experimentado por el conocimiento científico surgieron numerosas disciplinas científicas nuevas con yuxtaposiciones de parcelas establecidas por ciencias anteriores: bioquímica, biogeoquímica, sociolingüística, bioética, etc.

La sistematización científica requiere el conocimiento de diversas conexiones, mediante leyes o principios teóricos, entre diferentes aspectos del mundo empírico que se caracterizan mediante conceptos científicos. Así los conceptos de la ciencia son nudos en una red de interrelaciones sistemáticas en la que las leyes y los principios teoréticos constituyen los hilos... Cuantos más hilos converjan o partan de un nudo conceptual, tanto más importante será su papel sistematizado o su alcance sistemático

Una clasificación general ampliamente utilizada, planteada por Rudolf Carnap en 1955, es la que agrupa las disciplinas científicas en tres grandes grupos:

Sin embargo, dicha clasificación ha sido discutida y requiere de cierta discusión complementaria. Así Wilhelm Dilthey considera inapropiado el modelo epistemológico de las «Naturwissenschaften» («ciencias naturales»). Es decir, considera inadecuado usar el método científico, pensado para la física, a disciplinas que tiene que ver el estudio del hombre y la sociedad; y propone un modelo completamente diferente para las «Geisteswissenschaften» («ciencias humanas» o «ciencias del espíritu»), e.g., la filosofía, la psicología, la historia, la filología, la sociología, etc. Si para las ciencias naturales el objetivo último es la explicación, basada en la relación causa/efecto y en la elaboración de teorías descriptivas de los fenómenos, para las ciencias humanas se trata de la comprensión de los fenómenos humanos y sociales.

Mario Bunge (1972) considera el criterio de clasificación de la ciencia en función del enfoque que se da al conocimiento científico: por un lado, el estudio de los procesos naturales o sociales (el estudio de los hechos) y, por el otro, el estudio de procesos puramente lógicos (el estudio de las formas generales del pensar humano racional); es decir, postuló la existencia de una ciencia factual (o ciencia fáctica) y una ciencia formal. Las ciencias factuales se encargan de estudiar hechos auxiliándose de la observación y la experimentación. La física, la psicología y la sociología son ciencias factuales porque se refieren a hechos que se supone ocurren en la realidad y, por consiguiente, tienen que apelar al examen de pruebas empíricas.[17]

  • Las ciencias experimentales se ocupa del estudio del mundo natural. Por mundo natural se ha de entender todo lo que pueda ser supuesto, detectado o medido a partir de la experiencia. En su trabajo de investigación, los científicos se ajustan a un cierto método, un método científico general y un método específico al campo concreto y a los medios de investigación.
  • Las ciencias aplicadas consiste en la aplicación del conocimiento científico teórico (la llamada ciencia «básica» o «teórica») a las necesidades humanas y al desarrollo tecnológico. Por eso es muy común encontrar, como término, la expresión «ciencia y tecnología».
  • Las ciencias formales, en cambio, crean su propio objeto de estudio; su método de trabajo es puro juego de la lógica, en cuanto formas del pensar racional humano, en sus variantes: la lógica y las matemáticas. En la tabla que sigue se establecen algunos criterios para su distinción:[18]
Caracterización de las ciencias según el esquema de Bunge
Formales Fácticas
Objeto de estudio
  • Estudian entes formales, ideales o conceptuales
  • Dichos entes son postulados hipotéticamente (construidos, propuestos, presupuestos o definidos) por los científicos que los estudian.
  • Estudia el mundo de los hechos (Desde las galaxias a las partículas subatómicas).
  • Tales hechos se asumen que tienen existencia con independencia de los científicos y de las comunidades que los estudian, aunque puedan tener interacciones con ellos.
Modo de validación
  • Parten de axiomas o postulados y a partir de ellos demuestran teoremas
  • Los axiomas son relativos al contexto en el cual se opera.[19]
  • No requieren de cotejo empírico o experimentación.
  • Sus conclusiones adquieren grado de certeza
  • Se trabaja a partir de las consecuencias observacionales que se derivan de las conjeturas o hipótesis propuestas.
  • Juzgan sobre su adecuación al trozo de realidad que pretenden describir o explicar.
  • El resultado favorable es provisional sujeto a corrección y revisión.
Objetivo que persigue
  • Buscan la coherencia interna.
  • Busca la verdad lógica y necesaria.

El Premio Nobel de Química, Ilya Prigogine, propone superar la dicotomía entre la cultura de las ciencias humanísticas por un lado y el de las ciencias exactas por el otro porque el ideal de la ciencia es el de un esquema universal e intemporal, mientras que las ciencias humanas se basan en un esquema histórico ligado al concepto de situaciones nuevas que se superponen.[20][21]

Unidad de la ciencia

Unidad del edificio científico según Linneo y Diderot.

En filosofía de la ciencia, la unidad de la ciencia es la idea de que todas las ciencias forman una integralidad o un todo unificado, que no puede ser separado o desmembrado a riesgo de perder la visión de conjunto.[22][23]

A pesar de esta afirmación, por ejemplo, es claro que física y sociología son dos disciplinas bien distintas y diferenciadas, y casi podríamos decir de una cualidad diferente, aunque la tesis de la unidad o unicidad de la ciencia afirmaría que, en principio, ambas deberían formar parte de un universo intelectual unificado de difícil o inconducente desmembramiento.

La tesis de la unidad de la ciencia[24]​ está usualmente asociada con una visión de diferentes niveles de organización en la naturaleza, donde la física es la más básica o fundamental, y donde la química es la que le sigue en jerarquía, y sobre esta última sigue la biología, y sobre la biología sigue la sociología. Según esta concepción, y partiendo desde la física, se reconocería así que las células, los organismos, y las culturas, tienen todos una base o un origen biológico, pero representando tres diferentes niveles jerárquicos de la organización biológica.[25]

A pesar de lo expresado, también se ha sugerido (por ejemplo por Jean Piaget, 1950),[26]​ que la unicidad de la ciencia podría ser considerada en términos de un círculo de ciencias o de disciplinas, donde la física provee la base para la química, y donde a su vez la química es la base para la biología, y la biología la base para la psicología, y esta la base para la lógica y la matemática, y a su vez la lógica y la matemática serviría de base y de comprensión para la física.

La tesis de la unidad de la ciencia[27]​ simplemente expresa que hay leyes científicas comunes aplicables a cualquier cosa y en cualquier nivel de organización. Pero en un determinado nivel de organización, los científicos llaman a esas leyes con nombres particulares, y visualizan la aplicación y expresión de esas leyes en ese nivel de una manera adaptada y simplificada, enfatizando por ejemplo la importancia de alguna de ellas sobre las otras. Es así como la termodinámica o las leyes de la energía, parecerían ser universales para cierto número de diferentes disciplinas, ya que por cierto, todos los sistemas en la naturaleza operan o parecen operar sobre la base de transacciones de energía. Claro, esto no excluye la posibilidad de algunas leyes particulares aplicables específicamente a dominios quizás caracterizados por una complejidad creciente, tal como lo sugerido por Gregg R. Henriques (2003, consultar 'Tree of Knowledge System'), quien precisamente propone cuatro grados de complejidad: Materia, Vida, Mente, y Cultura. Desde luego, este árbol igualmente podría ser circular, con la cultura enmarcando la comprensión y la percepción de la materia y de los sistemas por parte de la gente.

La ciencia es una creación humana, y forma parte de cultura humana. La ciencia es un todo unificado, en el sentido que es profundamente entendida cuando se la considera de una manera integral y holística, y no hay científicos que estudien realidades alternativas. Sin embargo, bien podría argumentarse que los científicos no actúan con un enfoque integral, pues por facilidad de análisis o por las razones que fueren, se hacen hipótesis simplificatorias, se aísla, se trata separadamente. Es posiblemente la percepción de una realidad sola, lo único que desemboca en la unidad de la ciencia.

Según la lógica proposicional, la ciencia parecería ser un camino hacia la simplificación, o en realidad hacia la universalización de teorías científicas discretas sobre la energía, y que los físicos llaman unificación. Esto ha conducido a la teoría de cuerdas y a sus concepciones derivadas, probablemente relacionadas con la noción que, en la base, sólo se encuentra la energía que no fue liberada en la Gran Explosión, y realmente nada más.

La tesis de la unidad de la ciencia, resulta ser más clara y mejor argumentada, por la Teoría General de Sistemas de Ludwig von Bertalanffy, Paul Oppenheim, e Hilary Putnam. Y fue aún más fuertemente argumentada y clarificada por Jerry Fodor.[28]

Leyes científicas

Ley de Debye.

Una ley científica es una proposición científica que afirma una relación constante entre dos o más variables o factores, cada uno de los cuales representa una propiedad o medición de sistemas concretos. También se define como regla y norma constantes e invariables de las cosas, surgida de su causa primera o de sus cualidades y condiciones. Por lo general se expresa matemáticamente o en lenguaje formalizado. Las leyes muy generales pueden tener una prueba indirecta verificando proposiciones particulares derivadas de ellas y que sean verificables. Los fenómenos inaccesibles reciben una prueba indirecta de su comportamiento a través del efecto que puedan producir sobre otros hechos que sí sean observables o experimentables.

En la arquitectura de la ciencia la formulación de una ley es un paso fundamental. Es la primera formulación científica como tal. En la ley se realiza el ideal de la descripción científica; se consolida el edificio entero del conocimiento científico: de la observación a la hipótesis teórica-formulación-observación-experimento (ley científica), teoría general, al sistema. El sistema de la ciencia es o tiende a ser, en su contenido más sólido, sistema de las leyes.[29]

Diferentes dimensiones que se contienen en el concepto de ley:[30]

  • La aprehensión meramente descriptiva
  • Análisis lógico-matemático
  • Intención ontológica

Desde un punto de vista descriptivo la ley se muestra simplemente como una relación fija, entre ciertos datos fenoménicos. En términos lógicos supone un tipo de proposición, como afirmación que vincula varios conceptos relativos a los fenómenos como verdad.[31]​ En cuanto a la consideración ontológica la ley como proposición ha sido interpretada históricamente como representación de la esencia, propiedades o accidentes de una sustancia. Hoy día se entiende que esta situación ontológica se centra en la fijación de las constantes del acontecer natural, en la aprehensión de las regularidades percibidas como fenómeno e incorporadas en una forma de «ver y explicar el mundo».[32]

El problema epistemológico consiste en la consideración de la ley como verdad y su formulación como lenguaje y en establecer su «conexión con lo real», donde hay que considerar dos aspectos:

  • El término de lo real hacia el cual intencionalmente se dirige o refiere la ley, es decir, la constancia de los fenómenos en su acontecer como objeto de conocimiento. Generalmente, y de forma vulgar, se suele interpretar como «relación causa/efecto» o «descripción de un fenómeno». Se formula lógicamente como una proposición hipotética en la forma: Si se da a, b, c.. en las condiciones, h, i, j... se producirá s, y, z...[33][34]
  • La forma y el procedimiento con que la ley se constituye, es decir, el problema de la inducción.

Teorías científicas

Una teoría científica es una explicación de un aspecto del mundo natural o social que puede ser (o a fortiori, que ha sido) probada y corroborada repetidamente de acuerdo con el método científico, utilizando protocolos aceptados de observación, medición y evaluación de resultados. Cuando es posible, algunas teorías se prueban en condiciones controladas en un experimento.[35][36]​ En circunstancias que no son susceptibles de prueba experimental, las teorías se evalúan mediante principios de razonamiento abductivo. Las teorías científicas establecidas han resistido un escrutinio riguroso y encarnan el conocimiento científico.

Una teoría científica se diferencia de un hecho científico o de una ley científica en que una teoría explica el "por qué" o "cómo". Un hecho es una observación simple y básica, mientras que una ley es una declaración (a menudo una ecuación matemática) sobre una relación entre hechos u otras leyes. Por ejemplo, la Ley de Gravedad de Newton es una ecuación matemática que puede usarse para predecir la atracción entre cuerpos, pero no es una teoría para explicar cómo funciona la gravedad.[37]

Los científicos elaboran distintas teorías partiendo de hipótesis que han sido corroboradas por el método científico, luego recolectan pruebas para poner a prueba dichas teorías. Las finalidades de las teorías son explicativas y predictivas. La fuerza de una teoría científica se relaciona con la cantidad de fenómenos que puede explicar, los cuales son medidos por la capacidad que tiene dicha teoría de hacer predicciones falsables respecto de dichos fenómenos que tiende a explicar.

Los científicos utilizan las teorías como fundamentos para obtener conocimiento científico, pero también para motivos técnicos, tecnológicos o médicos. La teoría científica es la forma más rigurosa, confiable y completa de conocimiento posible. Esto es significativamente distinto al uso coloquial de la palabra «teoría», que se refiere a algo sin sustento o una suposición.[38]

Modelos científicos

Ejemplo de un modelo científico. Un esquema de los procesos químicos y de transporte relacionados con la composición atmosféricas.

Un modelo científico es una representación abstracta, conceptual, gráfica o visual (ver, por ejemplo: mapa conceptual), física de fenómenos, sistemas o procesos a fin de analizar, describir, explicar, simular (en general, explorar, controlar y predecir) esos fenómenos o procesos. Un modelo permite determinar un resultado final a partir de unos datos de entrada. Se considera que la creación de un modelo es una parte esencial de toda actividad científica.[39][40][41]

Aun cuando hay pocos acuerdos generales acerca del uso de modelos, La ciencia moderna ofrece una colección creciente de métodos, técnicas y teorías acerca de los diversos tipos de modelos. Las teorías y/o propuestas sobre la construcción, empleo y validación de modelos se encuentran en disciplinas tales como la metodología, filosofía de la ciencia, teoría general de los sistemas y en el campo relativamente nuevo de visualización científica. En la práctica, diferentes ramas o disciplinas científicas tienen sus propias ideas y normas acerca de tipos específicos de modelos. Sin embargo, y en general, todos siguen los principios del modelado.

Debe distinguirse entre un modelo científico y una teoría, aun cuando ambos se hallan muy estrechamente relacionados, pues el modelo para una teoría equivale a una interpretación de esta teoría. Una teoría dada puede tener diversos modelos para poder ser explicada.[42]

Para hacer un modelo es necesario plantear una serie de hipótesis, de manera que lo que se quiere estudiar esté suficientemente plasmado en la representación, aunque también se busca, normalmente, que sea lo bastante sencillo como para poder ser manipulado y estudiado.

Todo conocimiento de la realidad comienza con idealizaciones que consisten en abstraer y elaborar conceptos; es decir, construir un modelo acerca de la realidad. El proceso consiste en atribuir a lo percibido como real ciertas propiedades, que frecuentemente, no serán sensibles. Tal es el proceso de conceptualización y su traducción al lenguaje.

Eso es posible porque se suprimen ciertos detalles destacando otros que nos permiten establecer una forma de ver la realidad, aun sabiendo que no es exactamente la propia realidad. El proceso natural sigue lo que tradicionalmente se ha considerado bajo el concepto de analogía. Pero en la ciencia el contenido conceptual solo se considera preciso como modelo científico de lo real, cuando dicho modelo es interpretado como caso particular de un modelo teórico y se pueda concretar dicha analogía mediante observaciones o comprobaciones precisas y posibles.

El objeto modelo es cualquier representación esquemática de un objeto. Si el objeto representado es un objeto concreto entonces el modelo es una idealización del objeto, que puede ser pictórica (por ejemplo, un dibujo) o conceptual (una fórmula matemática); es decir, puede ser figurativa o simbólica. La informática ofrece herramientas para la elaboración de objetos-modelo a base del cálculo numérico.

La representación de una cadena polimérica con un collar de cuentas de colores es un modelo análogo o físico; un sociograma despliega los datos de algunas de las relaciones que pueden existir entre un grupo de individuos. En ambos casos, para que el modelo sea modelo teórico debe estar enmarcado en una estructura teórica. El objeto modelo así considerado deviene, en determinadas circunstancias y condiciones, en modelo teórico.

Un modelo teórico es un sistema hipotético-deductivo concerniente a un objeto modelo que es, a su vez, representación conceptual esquemática de una cosa o de una situación real o supuesta real.[43]​ El modelo teórico siempre será menos complejo que la realidad que intenta representar, pero más rico que el objeto modelo, que es solo una lista de rasgos del objeto modelizado. Bunge esquematiza estas relaciones de la siguiente forma:[44]

Cosa o hecho Objeto-modelo Modelo teórico
Deuterón Pozo de potencial del protón neutrón Mecánica cuántica del pozo de potencia
Soluto en una solución diluida Gas perfecto Teoría cinética de los gases
Tráfico a la hora punta Corriente continua Teoría matemática de la corriente continua
Organismo que aprende Caja negra markoviana Modelo del operador lineal de Bush y Mosteller
Cigarras que cantan Colección de osciladores acoplados Mecánica estadística de los osciladores acoplados
Cualquier objeto modelo puede asociarse, dentro de ciertos márgenes, a teorías generales para producir diversos modelos teóricos. Un se gas puede considerar como un «enjambre de partículas enlazadas por fuerzas de Van der Waals», pero se puede insertar tanto en el marco teórico de la teoría clásica como en el de la teoría relativista cuántica de partículas, produciendo diferentes modelos teóricos en cada caso.

Límites de la ciencia

Diagrama frenológico del siglo XIX. La frenología es una pseudociencia que en el pasado fue considerada una verdadera ciencia.

En filosofía de la ciencia, el problema de la demarcación es la cuestión de definir los límites que deben configurar el concepto «ciencia».[45]​ Las fronteras se suelen establecer entre lo que es conocimiento científico y no científico, entre ciencia y metafísica, entre ciencia y pseudociencia, y entre ciencia y religión. El planteamiento de este problema, conocido como problema generalizado de la demarcación, abarca estos casos. El problema generalizado, en último término, lo que intenta es encontrar criterios para poder decidir, entre dos teorías dadas, cuál de ellas es más «científica».

Tras más de un siglo de diálogo entre filósofos de la ciencia y científicos en diversos campos, y a pesar de un amplio consenso acerca de las bases generales del método científico,[46]​ los límites que demarcan lo que es ciencia, y lo que no lo es, continúan siendo debatidos.[47]

El problema de la distinción entre lo científico y lo pseudocientífico tiene serias implicaciones éticas y políticas.[48]​ El Partido Comunista de la URSS declaró (1949) pseudocientífica a la genética mendeliana —por «burguesa y reaccionaria»— y mandó a sus defensores como Vavílov a morir en campos de concentración.[49]​ Más recientemente y en el otro extremo del espectro político, empresas y asociaciones de la industria del petróleo, acero y automóviles, entre otras, formaron grupos de presión para negar el origen antropogénico del cambio climático a contramano de la abrumadora mayoría de la comunidad científica.[50]

Consenso científico

Julian Huxley dio su nombre en 1942 a la teoría sintética de la evolución, que hoy es ampliamente aceptada en la comunidad científica.
El consenso científico es el juicio colectivo, la posición y la opinión de la comunidad científica en un campo particular de estudio. El consenso implica un acuerdo general, aunque no necesariamente unanimidad.[51]

El consenso suele lograrse a través del debate científico.[52]​ La ética científica exige que las nuevas ideas, los hechos observados, las hipótesis, los experimentos y los descubrimientos se publiquen, justamente para garantizar la comunicación a través de conferencias, publicaciones (libros, revistas) y su revisión entre pares y, dado el caso, la controversia con los puntos de vista discrepantes.[53]​ La reproducibilidad de los experimentos y la falsación de las teorías científicas son un requisito indispensable para la buena práctica científica.

En ocasiones, las instituciones científicas emiten declaraciones con las que tratan de comunicar al "exterior" una síntesis del estado de la ciencia desde el "interior". El debate mediático o político sobre temas que son controvertidos dentro de la esfera pública pero no necesariamente para la comunidad científica puede invocar un consenso científico, como por ejemplo el tema de la evolución biológica[54][55]​ o el cambio climático.[56]

El conocimiento científico adquiere el carácter de objetividad por medio de la comunidad y sus instituciones, con independencia de los individuos. D. Bloor, siguiendo a Popper y su teoría del mundo 3, convierte simétricamente el reino de lo social en un reino sin súbditos individuales, en particular reduce el ámbito del conocimiento al estado del conocimiento en un momento dado, esto es, a las creencias aceptadas por la comunidad relevante, con independencia de los individuos en concreto. El conocimiento científico es únicamente adscrito a la «comunidad científica».

Pero esto no debe llevar a pensar que el conocimiento científico es independiente de un individuo concreto como algo autónomo. Lo que ocurre es que se encuentra «socialmente fijado» en documentos y publicaciones y está causalmente relacionado con los conocimientos de los individuos concretos que forman parte de la comunidad.[57]

Progreso científico

Visión medieval del universo.

El progreso científico es una etiqueta o una denominación, con frecuencia usada para señalar o evocar el desarrollo de los conocimientos científicos. El progreso técnico depende, en buena medida, del progreso científico.

Nuestro concepto de progreso científico está detrás de la idea de que la ciencia como disciplina incrementa cada vez más su capacidad para resolver problemas, a través de la aplicación de cuidadas y particulares metodologías que genéricamente englobamos con la denominación de método científico. Sin embargo, es posible que la ciencia no progrese indefinidamente, sino que llegue el fin de la ciencia.

Historia

El mecanismo de Anticitera, una computadora analógica construida en la Edad Antigua para predecir posiciones astronómicas y eclipses. Algunas de las ciencias de las primeras civilizaciones fueron la astronomía y las matemáticas.

La historia de la ciencia documenta el desarrollo histórico de la ciencia, la técnica y la tecnología, así como la interrelación que han tenido las tres entre sí y con el resto de los aspectos de la cultura a nivel mundial, como son la economía, la sociedad, la política, la religión, la ideología, etc. En un sentido amplio, la historia de la ciencia existía en muchas civilizaciones desde antes de la Edad Moderna.[58]​ La ciencia moderna es distinta en su enfoque a la ciencia antigua y es la que define ahora lo que se entiende como ciencia en el sentido más estricto del término.[59][60]​ La palabra ciencia se usaba para categorizar un tipo de conocimiento específico, más que para referirse a la búsqueda de dicho conocimiento. En particular, la ciencia era el tipo de conocimiento que las personas pueden comunicarse entre sí y compartir.

El conocimiento sobre el funcionamiento de las cosas naturales se acumuló mucho antes de que se registrara su historia y condujo al desarrollo de un pensamiento abstracto complejo. Lo demuestra la construcción de complejos calendarios, el uso de técnicas para hacer comestibles las plantas venenosas, la construcción de obras públicas a escala nacional —como las que aprovecharon el terreno inundable del Yangtsé con embalses,[61]​ presas y diques— y de edificios como las pirámides. Sin embargo, no se hizo una distinción consciente y consistente entre el conocimiento de tales cosas y otros tipos de conocimiento comunitario, como las mitologías y los sistemas legales.

El análisis histórico de la ciencia y la tecnología recurre a los contenidos y metodologías de las distintas subdivisiones de la historia, tanto temáticas (historia de las ideas, historia cultural, historia social, historia económica) como temporales y espaciales. La ciencia ha sido una gran ayuda para el ser humano.

Divulgación científica

La divulgación científica es el conjunto de actividades que interpretan y hacen accesible el conocimiento científico a la sociedad, es decir, todas aquellas labores que llevan a cabo el conocimiento científico a las personas interesadas en entender o informarse sobre ese tipo de conocimiento. La divulgación pone su interés no solo en los descubrimientos científicos del momento (por ejemplo, la determinación de la masa del neutrino), sino también en teorías más o menos bien establecidas o aceptadas socialmente (por ejemplo, la teoría de la evolución) o incluso en campos enteros del conocimiento científico.[62]

Mientras que el periodismo científico se centra en desarrollos científicos recientes, la divulgación científica es más amplia, más general.

Influencia en la sociedad

Dado el carácter universal de la ciencia, su influencia se extiende a todos los campos de la sociedad, desde el desarrollo tecnológico a los modernos problemas de tipo jurídico relacionados con campos de la medicina o la genética. En ocasiones la investigación científica permite abordar temas de gran calado social como el Proyecto Genoma Humano y grandes implicaciones éticas como el desarrollo del armamento nuclear, la clonación, la eutanasia y el uso de las células madre.

Asimismo, la investigación científica moderna requiere en ocasiones importantes inversiones en grandes instalaciones como grandes aceleradores de partículas (CERN), la exploración espacial o la investigación de la fusión nuclear en proyectos como ITER.

Véase también

Notas y referencias

  1. «Presentación». Tecnología industrial II. España: Everest Sociedad Anónima. 2014. p. 3. ISBN 9788424190538. 
  2. Tomado, con añadidos, de la definición de ciencia del Diccionario de la Real Academia Española.
  3. «scientific method». Oxford Dictionaries (en inglés). Archivado desde el original el 21 de marzo de 2019. Consultado el 10 de marzo de 2019. «A method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.» 
  4. "Rules for the study of natural philosophy", Newton 1999, pp 794-6, libro 3, The System of the World
  5. Conant, James Bryant, 1893-1978. (1947). On understanding science : an historical approach. Yale University Press. ISBN 978-0-300-13655-5. OCLC 523854. Consultado el 4 de febrero de 2020. 
  6. Gregorio Klimovsky, Las desventuras del conocimiento científico. Una introducción a la epistemología, A-Z editora, Bs.As., 1997, ISBN, 950-534-275-6
  7. Según el teorema de Gödel, no existe un sistema aritmético recursivo perfecto, que sea al mismo tiempo consistente, decidible y completo.
  8. a b c Perelló, Javier Gimeno. «De las clasificaciones ilustradas al paradigma de la transdisciplinariedad». El catoblepas (116). ISSN 1579-3974. 
  9. Véase trivium y quadrivium
  10. La pólvora, la brújula, las técnicas de navegación y los descubrimientos geográficos, el nuevo arte de la guerra, la contabilidad en los negocios, las sociedades por acciones, etc.
  11. a b Gran Enciclopedia Larousse. Barcelona: Planeta. 1977. ISBN 978-84-320-2030-8. 
  12. Discours préliminaire de l'Encyclopedie, París 1929, pág. 61
  13. Velasco, Adriana Figueroa (1997). Conociendo a los grandes filosófos. Santiago: Universitaria. p. 198. ISBN 9789561113138. Consultado el 3 de febrero de 2015. 
  14. Álvarez, F. Javier (2006). Historia del pensamiento y cristianismo: filosofía contemporánea (1ra edición). Andamio. ISBN 9788496551121. Consultado el 3 de febrero de 2015. 
  15. Comte, Auguste. «Antropologia, Psicologia y Sociologia. Profesores de Enseñanza Secundaria. Temario para la Preparación de Oposiciones.». Filosofía 2. MAD-Eduforma. p. 351. ISBN 9788466505376. Consultado el 3 de febrero de 2015. 
  16. Hempel, Carl (1976 [1966]). Filosofía de la Ciencia Natural. Alianza. p. 138. 
  17. Prigogine, Ilya; Stengers, Isabelle (1983). La nueva alianza: metamorfosis de la ciencia. Alianza. ISBN 8420623687. OCLC 636988060. Consultado el 28 de febrero de 2019. 
  18. Cha Larrieu, Alberto (2002). Elementos de epistemología. Montevideo: Trilce. 
  19. Los axiomas de un sistema pueden ser teoremas de otro sistema y no tienen carácter de «verdad evidente» como suponía la lógica clásica
  20. Prigogine, Ilya (1996). El fin de las certidumbres. Andrés Bello. ISBN 9789561314306. 
  21. Prigogine, Ilya (2011). El nacimiento del tiempo. Buenos Aires: Fábula Tusquets. ISBN 978-987-670-087-0. 
  22. María Aurelia Lazo Pérez , La interdisciplinariedad y la integralidad, una necesidad de los profesionales de la educación, Cuadernos de Educación y Desarrollo, vol 3 nº 27 (mayo 2011), cita cf. 'Acercamiento teórico al enfoque interdisciplinario de las ciencias: Líneas directrices' : La autora después de reflexionar plantea que la interdisciplinariedad es mucho más que un intercambio de experiencias, conocimientos y procesos, la misma constituye una necesidad social, científica e intelectual, la constante fragmentación de las ciencias y de su estudio, llamado pensamiento disciplinar, o la compartimentación en las disciplinas, no posibilita el estudio de los objetos en su conjunto, lo que conlleva es a una estrechez mental no acorde con la necesidad que se tiene de dar soluciones integradoras a los problemas que surgen en un mundo que se inclina con mayor fuerza a la globalización.
  23. Stanford Encyclopedia of Philosophy: The Unity of Science.
  24. Paul Oppenhein, Hilary Putnam, Unity of Science as a Working Hypothesis.
  25. Internet Encyclopedia of Philosophy: Philosophy of Medicine (cf. Reductionism vs. Holism).
  26. Brisa Varela, Lila Ferro, Las ciencias sociales en el nivel inicial: Andamios para futuros/as ciudadanos/as, Ediciones Colihue, Buenos Aires (2007), ISBN 978-950-581-707-8, Cita pág. 40: Piaget expuso sistemáticamente su postura frente a la interdisciplinariedad. Él consideraba que el surgimiento de ésta obedecía a que el conjunto de los conocimientos constituía una totalidad y, por la evolución interna de la ciencia, había llegado el momento donde se evidenciaba su unidad última; el concepto de estructura era la prueba de esa unidad. Las estructuras subyacentes a todas las ciencias serían, según Piaget, las mismas. Por eso sostenía que la realidad era isomórfica, y por lo tanto el monismo metodológico debía plantearse, ya que no existía discontinuidad entre las ciencias naturales y las sociales..
  27. Rudolf Carnap, Logical Foundations of the Unity of Science.
  28. Internet Encyclopedia of Philosophy: Jerry Fodor.
  29. París, Carlos (1952). Física y filosofía: El problema de la relación entre ciencia física y filosofía de la naturaleza. Consejo Superior de Investigaciones Científicas. Universidad de Madrid. p. 85. 
  30. París, Carlos (1992). Ciencia, tecnología y transformación social. Universitat de Valencia. p. 109. ISBN 84-370-0966-9. 
  31. Matemáticamente la aplicación de un procedimiento mensurativo cuantifica dichos datos y convierte en variables los conceptos por ellos referenciados, mientras que su relación adquiere la estructura de una función matemática. Los empiristas lógicos pensaron que la estructura afirmativa de las leyes solamente son esquemas meramente formales de funciones proposicionales que adquieren la forma de argumento al sustituir las variables por los contenidos conceptuales de la observación previamente medida. Eso hizo posible la pretensión de construcción de "el lenguaje Universal de la Ciencia" como "Proyecto Unificado".
  32. Russell, Bertrand (1982). La evolución de mi pensamiento filosófico. Madrid: Alianza. pp. 163 y ss. 84-206-1605-2. 
  33. Russell, Bertrand (1982). La evolución de mi pensamiento filosófico. Madrid: Alianza. pp. 169 y ss. 84-206-1605-2. 
  34. El hecho de la flotación de un cuerpo en un fluido, se formularía: Si un cuerpo a se encuentra sumergido en un fluido, condición h, experimentará un empuje vertical hacia arriba igual al peso del volumen de fluido que desaloja. Lo que equivale a la explicación causal de que: Un cuerpo flota en el agua porque el peso del volumen del agua que desaloja, (el volumen que ocupa el cuerpo sumergido), es mayor que el peso de todo el cuerpo (explicación esencial); o «descripción del fenómeno» de cómo sucede la flotación de un cuerpo.
  35. Internet Archive (1999). Science and creationism : a view from the National Academy of Sciences. Washington, DC : National Academy Press. ISBN 978-0-585-04726-3. Consultado el 2 de febrero de 2024. 
  36. Winther, Rasmus Grønfeldt (2021). Zalta, Edward N., ed. The Structure of Scientific Theories (Spring 2021 edición). Metaphysics Research Lab, Stanford University. Consultado el 2 de febrero de 2024. 
  37. Bradford, Alina (31 de enero de 2022). «What Is a Scientific Theory?». livescience.com (en inglés). Consultado el 2 de febrero de 2024. 
  38. «Evolution Resources from the National Academies». web.archive.org. 7 de septiembre de 2019. Consultado el 2 de febrero de 2024. 
  39. Cartwright , Nancy. 1983. How the Laws of Physics Lie. Oxford University Press
  40. Hacking, Ian. 1983. Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press
  41. von Neumann, John. «Method in the Physical Sciences». En Bródy F., Vámos, ed. The Neumann Compendium (World Scientific): 628. «[...] las ciencias no tratan de explicar, apenas tratan de interpretar, principalmente hacen modelos. Por un modelo se entiende una construcción matemática que, con el agregado de ciertas interpretaciones verbales, describe el fenómeno observado. La justificación de esta construcción matemática es única y precisamente que se espera que funcione —ésto es, que describa correctamente los fenómenos de un área razonablemente grande.» 
  42. Bailer-Jones, Daniela. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.pp. 64-76 ISBN 978-0-8229-7123-8. OCLC 794702160. Consultado el 2019-12-07 “Un modelo puede mostrar partes distintas  en su origen desde una cierta analogía, teoría o hipótesis, pero como modelo se juzga respecto al fenómeno del cual es modelado. ¿El modelo es una buena descripción?, ¿Representa fielmente el fenómeno?”.
  43. Bunge, Mario (1975). Teoría y realidad. Barcelona: Ariel. p. 19. ISBN 84-344-0725-6. «Los mecanismos hipotéticos deberán tomarse e serio, como representando las entrañas de la cosa, y se deberá dar prueba de esta convicción realista (pero al mismo tiempo falible) imaginando experiencias que puedan poner en evidencia la realidad de los mecanismos imaginados. En otro caso se hará literatura fantástica o bien se practicará la estrategia convencionalista, pero en modo alguno se participará en la búsqueda de la verdad.» 
  44. Bunge, Mario. (1973). Method, Model and Matter. Springer Netherlands. pp. 111. ISBN 978-94-010-2519-5. OCLC 851392088. Consultado el 2019-12-07. "Cualquier modelo teórico de un objeto concreto está por debajo de la complejidad de donde se origina, pero en cualquier caso es mucho más rico que el propio objeto modelo, que es solo una lista de rasgos del objeto concreto. Por lo tanto, si un planeta se modela como un punto de masa, o incluso como una bola, no se concreta mucho. Es solo asumiendo que dicho modelo satisface los requisitos establecidos por leyes, en particular leyes de movimiento, que obtenemos algunas piezas del conocimiento científico. Mira algunos ejemplos más:"
  45. Karl Popper, La lógica de la investigación científica «Llamo problema de la demarcación al de encontrar un criterio que nos permita distinguir entre las ciencias empíricas, por un lado, y los sistemas metafísicos por otro.»
  46. Gauch, Hugh G., Jr., Scientific Method in Practice (2003) 3-7.
  47. Cover, J.A., Curd, Martin (Eds, 1998) Philosophy of Science: The Central Issues, 1-82.
  48. Lakatos, Imre; Gregory, Currie (1983). La metodología de los programas de investigación científica. Madrid: Alianza. p. 9. ISBN 8420623490. OCLC 318332464. Consultado el 26 de febrero de 2019. «¿Qué distingue al conocimiento de la superstición, la ideología o la pseudo-ciencia? La Iglesia Católica excomulgó a los copernicanos, el Partido Comunista persiguió a los mendelianos por entender que sus doctrinas eran pseudocientíficas. La demarcación entre ciencia y pseudociencia no es un mero problema de filosofía de salón; tiene una importancia social y política vital.» 
  49. A. Giusti, Miguel (2000). Miguel Guisti, ed. La filosofía del siglo XX: balance y perspectivas (primera edición edición). Fondo Editorial de la Pontificia Universidad Católica del Perú. pp. 832 páginas. ISBN 9972-42-354-9. Consultado el 15 de enero de 2012. «El Partido Comunista de la URSS declaró (1949) pseudocientífica a la genética mendeliana -por "burguesa y reaccionaria"- y mandó a sus defensores como Vavílov a morir en campos de concentración». 
  50. Begley, Sharon (13 de agosto de 2007). «The Truth About Denial». Newsweek. Archivado desde el original el 18 de agosto de 2007. Consultado el 6 de agosto de 2007. 
  51. «Glossary: Scientific Consensus». www.greenfacts.org. Consultado el 1 de mayo de 2020. 
  52. Laudan, Larry. (1986). Science and Values : the Aims of Science and Their Role in Scientific Debate.. University of California Press. ISBN 978-0-520-90811-6. OCLC 609849958. Consultado el 1 de mayo de 2020. 
  53. Ford, Michael (2008). «Disciplinary authority and accountability in scientific practice and learning». Science Education (en inglés) 92 (3): 404-423. ISSN 1098-237X. doi:10.1002/sce.20263. Consultado el 1 de mayo de 2020. 
  54. http://www.aaas.org/news/releases/2006/pdf/0219boardstatement.pdf
  55. «NSTA - View Position Statement». web.archive.org. 19 de abril de 2003. Archivado desde el original el 19 de abril de 2003. Consultado el 1 de mayo de 2020. 
  56. | Climate Change Science: An Analysis of Some Key Questions | Committee on the Science of Climate Change | Division on Earth and Life Studies | National Research Council Archivado el 11 de mayo de 2008 en Wayback Machine.
  57. Bustos, E. (2009-2013). «Objetividad». En Villoro, L., ed. El conocimiento. Enciclopedia Iberoamericana de Filosofía 20. Trotta. p. 89 y ss. ISBN 978-84-87699-48-1 (obra completa) ISBN 84-8164-358-0 (edición impresa) ISBN 978-84-9879-402-1 (edición digital). 
  58. Grant, Edward (1 de enero de 1997). «History of Science: When Did Modern Science Begin?». The American Scholar 66 (1): 105-113. JSTOR 41212592. 
  59. Heilbron, 2003, p. vii
  60. "El historiador ... requiere una definición muy amplia de "ciencia"- que ... nos ayudará a entender la empresa científica moderna. Necesitamos ser amplios e inclusivos, en lugar de estrechos y exclusivos.... y debemos esperar que cuanto más atrás vayamos [en el tiempo], más amplios tendremos que ser." — (Lindberg, 2007, p. 3), que cita además Pingree, David (Diciembre de 1992). «Hellenophilia versus the History of Science». Isis 4 (4): 554-63. Bibcode:1992Isis...83..554P. JSTOR 234257. doi:10.1086/356288. 
  61. Sima Qian. (司馬遷, m. 86 a.C.) en suz Memorias históricas. (太史公書) cubriendo unos 2500 años de historia china, registros Sunshu Ao (孫叔敖, fl. c. 630-595 a.C. - Dinastía Zhou), el primer conocido ingeniero hidráulico de China, citado en (Joseph Needham et.al (1971) Ciencia y civilización en China 4.3 p. 271) como constructor de un embalse que ha durado hasta el día de hoy.
  62. Manuel Calvo Hernando (2006). «Objetivos y funciones de la divulgación científica». Manual formativo de ACTA. ISSN 1888-6051. 

Bibliografía

  • Bunge, Mario (1969). La ciencia: su método y su filosofía. Buenos Aires. 
  • — (1980). Epistemología: curso de actualización. Barcelona. Ariel. ISBN 84-344-8004-2. 
  • — (1981). Materialismo y ciencia. Barcelona. Ariel. ISBN 84-344-0828-7. 
  • Cassirer, Ernst (1979). El problema del conocimiento en la filosofía y en la ciencia modernas. México: Fondo de Cultura Económica. 
  • Feyerabend, Paul. «Cómo ser un buen empirista: defensa de la tolerancia en cuestiones epistemológicas». Revista Teorema 7 (Valencia: Universidad de Valencia). ISBN 84-600-0507-0. 
  • — (1975). Contra el método: esquema de una teoría anarquista del conocimiento. Barcelona: Ariel. ISBN 84-344-0735-3. 
  • — (1990). Diálogo sobre el método. Madrid: Cátedra. ISBN 84-376-0956-9. 
  • — (1984). Adiós a la razón. Madrid: Tecnos. ISBN 84-309-1071-9. 
  • Fried Schnitman, D.; Prigogine, I.; Morin, E.; et. al. (1994). Nuevos paradigmas, Cultura y Subjetividad. Buenos Aires: Paidós. ISBN 950-12-7023-8. 
  • Hurtado, G. (Abril de 2003). «¿Saber sin verdad? Objeciones a un argumento de Villoro». Crítica. Revista Hispanoamericana de Filosofía 35 (103): 121-134. 
  • Popper, Karl (2004). La lógica de la investigación científica. Madrid: Tecnos. ISBN 84-309-0711-4. 
  • — (1984). Sociedad abierta, universo abierto. Madrid: Tecnos. ISBN 84-309-1105-7. 
  • — (2002). Conjeturas y refutaciones: el desarrollo del conocimiento científico. Madrid: Tecnos. ISBN 84-309-0723-8. 
  • Putnam, Hilary (1988). Razón, verdad e historia. Madrid: Tecnos. ISBN 84-309-1577-X. 
  • — (1994). Las mil caras del realismo. Barcelona: Paidós. ISBN 84-7509-980-7. 
  • — (1985). W. K. Essler, H. Putnam y W. Stegmüller, ed. Epistemology, methodology, and philosophy of science: essays in honor of Carl G. Hempel on the occasion of his 80th birthday. 
  • Quine, Willard Van Orman (1998). Del estímulo a la ciencia. Barcelona: Ariel. ISBN 84-344-8747-0. 
  • Villoro, J. (1992). Creer, saber, conocer. México DF: Siglo XXI. ISBN 968-23-1151-9. 

Enlaces externos