Diferencia entre revisiones de «Función sobreyectiva»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
MetroBot (discusión · contribs.)
m Bot: corrigiendo errores de sintaxis
Línea 1: Línea 1:
[[Archivo:Surjection.svg|frame|right|Ejemplo de función sobreyectiva (no [[función inyectiva|inyectiva]]).]]
[[Archivo:Surjection.svg|derecha|Ejemplo de función sobreyectiva (no [[función inyectiva|inyectiva]]).]]
En [[matemática]], una [[función matemática|función]] <math>\scriptstyle f \colon X \to Y \,</math> es '''sobreyectiva'''<ref name="c">{{cita libro|título=Diccionario esencial de las ciencias|editor=Real Academia de Ciencias Exactas, Física y Naturales|isbn=84-239-7921-0|año=1999|editorial=Espsa}}</ref> ('''epiyectiva''', '''suprayectiva''',<ref name="c"/> '''suryectiva''', '''exhaustiva'''<ref name="c"/> o '''subyectiva''') si está aplicada sobre todo el [[codominio]], es decir, cuando cada elemento de <math>\scriptstyle Y</math> es la [[Conjunto imagen |imagen]] de como mínimo un elemento de <math>\scriptstyle X</math>.
En [[matemática]], una [[función matemática|función]] <math>\scriptstyle f \colon X \to Y \,</math> es '''sobreyectiva'''<ref name="c">{{cita libro|título=Diccionario esencial de las ciencias|editor=Real Academia de Ciencias Exactas, Física y Naturales|isbn=84-239-7921-0|año=1999|editorial=Espsa}}</ref> ('''epiyectiva''', '''suprayectiva''',<ref name="c"/> '''suryectiva''', '''exhaustiva'''<ref name="c"/> o '''subyectiva''') si está aplicada sobre todo el [[codominio]], es decir, cuando cada elemento de <math>\scriptstyle Y</math> es la [[Conjunto imagen |imagen]] de como mínimo un elemento de <math>\scriptstyle X</math>.



Revisión del 09:48 18 may 2018

Ejemplo de función sobreyectiva (no inyectiva).
Ejemplo de función sobreyectiva (no inyectiva).

En matemática, una función es sobreyectiva[1]​ (epiyectiva, suprayectiva,[1]suryectiva, exhaustiva[1]​ o subyectiva) si está aplicada sobre todo el codominio, es decir, cuando cada elemento de es la imagen de como mínimo un elemento de .

Formalmente,

Cardinalidad y sobreyectividad

Dados dos conjuntos y , entre los cuales existe una función sobreyectiva , se tiene que los cardinales cumplen:

Si además existe otra aplicación sobreyectiva , entonces puede probarse que existe una aplicación biyectiva entre y , por el teorema de Cantor-Bernstein-Schröder.

Véase también

Referencias

  1. a b c Real Academia de Ciencias Exactas, Física y Naturales, ed. (1999). Diccionario esencial de las ciencias. Espsa. ISBN 84-239-7921-0. 

Bibliografía