Diferencia entre revisiones de «Sistema de numeración»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
m Revertidos los cambios de 186.137.65.210 (disc.) a la última edición de Eduardosalg
Línea 1: Línea 1:
{| class="WSerieV" id="WNumeration" cellpadding="0" cellspacing="3" bgcolor="#FFFFFF" style="float:right; border:1px solid; font-size: small"
{| class="WSerieV" id="WNumeration" cellpadding="0" cellspacing="3" bgcolor="#FFFFFF" style="float:right; border:1px solid; font-size: small"

el sistyema de numeracion es lo que la mina usa para colarse los deddos posdat5a matts se la come
|- align="center" height="15"
|- align="center" height="15"
| colspan="2" | <h4>Sistemas de numeración
| colspan="2" | <h4>Sistemas de numeración

Revisión del 15:20 17 ago 2010

Sistemas de numeración

Nociones
Notaciones
Numeraciones

Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.

Un sistema de numeración puede representarse como

donde:

  • es el sistema de numeración considerado (p.ej. decimal, binario, etc.).
  • es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9,A,B,C,D,E,F}.
  • son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas.

Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema.

Para indicar en qué sistema de numeración se representa una cantidad se añade como subíndice a la derecha el número de símbolos que se pueden representar en dicho sistema.

Ejemplos

  • el número es un número válido en el sistema decimal, pero el número no lo es, ya que utiliza un símbolo A no válido en el sistema decimal.
  • el número es un número válido en el sistema octal, pero el número no lo es, ya que el símbolo 9 no es un símbolo válido en el sistema octal.
  • el número es un número válido en el sistema hexadecimal, pero el número no lo es, ya que el símbolo K no es un símbolo válido en el sistema hexadecimal.
  • Las lenguas naturales sin ser sistemas formales son sistemas que generalmente cuentan con un procedimiento para nombrar los numerales. La base de los sistemas encontrados en las lenguas del mundo son la base 10 y la base 20, ya que dichos sistemas se originaron en el contaje de dedos de manos (y a veces también pies).

Clasificación

Los sistemas de numeración pueden clasificarse en dos grandes grupos: posicionales y no-posicionales:

  • En los sistemas no-posicionales los dígitos tienen el valor del símbolo utilizado, que no depende de la posición (columna) que ocupan en el número.
  • En los sistemas de numeración ponderados o posicionales el valor de un dígito depende tanto del símbolo utilizado, como de la posición que ése símbolo ocupa en el número.

Por ejemplo, el sistema de numeración egipcio es no posicional, en cambio el babilónico es posicional. Las lenguas naturales poseen sistemas de numeración posicionales basados en base 10 ó 20, a veces con subsistemas de cinco elementos. Además, en algunas pocas lenguas los numerales básicos a partir de cuatro tienen nombres basados en numerales más pequeños.

Sistemas de numeración no posicionales

Estos son los más primitivos se usaban por ejemplo los dedos de la mano para representar la cantidad cinco y después se hablaba de cuántas manos se tenía. También se sabe que se usaba cuerdas con nudos para representar cantidad. Tiene mucho que ver con la coordinabilidad entre conjuntos. Entre ellos están los sistemas del antiguo Egipto, el sistema de numeración romana, y los usados en Mesoamérica por mayas, aztecas y otros pueblos .

Sistemas de numeración semi posicionales

El sistema de los números romanos no es estrictamente posicional. Por esto, es muy complejo diseñar algoritmos de uso general (por ejemplo, para sumar, restar, multiplicar o dividir). Como ejemplo, en el número romano XCIX (99 decimal) los numerales X (10 decimal) del inicio y del fin de la cifra equivalen siempre al mismo valor, sin importar su posición dentro de la cifra.

Sistemas de numeración posicionales

El número de símbolos permitidos en un sistema de numeración posicional se conoce como base del sistema de numeración. Si un sistema de numeración posicional tiene base b significa que disponemos de b símbolos diferentes para escribir los números, y que b unidades forman una unidad de orden superior.

Ejemplo en el sistema de numeración decimal

Si contamos desde 0, incrementando una unidad cada vez, al llegar a 9 unidades, hemos agotado los símbolos disponibles, y si queremos seguir contando no disponemos de un nuevo símbolo para representar la cantidad que hemos contado. Por tanto añadimos una nueva columna a la izquierda del número, reutilizamos los símbolos de que disponemos, decimos que tenemos una unidad de segundo orden (decena), ponemos a cero las unidades, y seguimos contando.

De igual forma, cuando contamos hasta 99, hemos agotado los símbolos disponibles para las dos columnas; por tanto si contamos (sumamos) una unidad más, debemos poner a cero la columna de la derecha y sumar 1 a la de la izquierda (decenas). Pero la columna de la izquierda ya ha agotado los símbolos disponibles, así que la ponemos a cero, y sumamos 1 a la siguiente columna (centena). Como resultado nos queda que 99+1=100.

Como vemos, un sistema de numeración posicional se comporta como un cuentakilómetros: va sumando 1 a la columna de la derecha y, cuando la rueda de esa columna ha dado una vuelta (se agotan los símbolos), se pone a cero y se añade una unidad a la siguiente columna de la izquierda.

Pero estamos tan habituados a contar usando el sistema decimal que no somos conscientes de este comportamiento, y damos por hecho que 99+1=100, sin pararnos a pensar en el significado que encierra esa expresión.

Tal es la costumbre de calcular en decimal que la mayoría de la población ni siquiera se imagina que puedan existir otros sistemas de numeración diferentes al de base 10, y tan válidos y útiles como este. Entre esos sistemas se encuentran el de base 2 sistema binario, de base 8 sistema octal y el de base 16 sistema hexadecimal. También los antiguos mayas tuvieron un sistema de numeración posicional el cual ya no se usa.

Teorema Fundamental de la numeración

Este teorema establece la forma general de construir números en un sistema de numeración posicional. Primero estableceremos unas definiciones básicas:

, número válido en el sistema de numeración.
, base del sistema de numeración. Número de símbolos permitidos en el sistema.
, un símbolo cualquiera de los permitidos en el sistema de numeración.
,: número de dígitos de la parte entera.
, coma fraccionaria. Símbolo utilizado para separar la parte entera de un número de su parte fraccionaria.
,: número de dígitos de la parte decimal.

La fórmula general para construir un número N, con un número finito de decimales, en un sistema de numeración posicional de base b es la siguiente:

El valor total del número será la suma de cada dígito multiplicado por la potencia de la base correspondiente a la posición que ocupa en el número.

Esta representación posibilita la realización de sencillos algoritmos para la ejecución de operaciones aritméticas.

Ejemplo en el sistema decimal

En el sistema decimal los símbolos válidos para construir números son {0,1,...9} (0 hasta 9, ambos incluidos), por tanto la base (el número de símbolos válidos en el sistema)

En la figura inferior podemos ver el teorema fundamental de la numeración aplicado al sistema decimal.




Los dígitos a la izquierda de la coma fraccionaria representados por dn ... d2 d1 d0 , toman el valor correspondiente a las potencias positivas de la base (10 en el sistema decimal), en función de la posición que ocupan en el número, y representan respectivamente al dígito de las n-unidades (10n), centenas (10²=100), decenas (10¹=10) y unidades (100=1), ya que como se ve en el gráfico están colocados en las posiciones n..., tercera, segunda y primera a la izquierda de la coma fraccionaria.

Los dígitos a la derecha de la coma fraccionaria d-1, d-2, d-3 ... d-n representan respectivamente al dígito de las décimas (10-1=0,1), centésimas (10-2=0,01), milésimas (10-3=0,001) y n-ésimas (10-n) .

Por ejemplo, el número 1492,36 en decimal, puede expresarse como: 1492/36

Ejemplo en el sistema binario

Tomemos ahora el sistema binario o de base 2. En este sistema los dígitos válidos son {0,1}, y dos unidades forman una unidad de orden superior.

En la figura inferior podemos ver el teorema fundamental de la numeración aplicado al sistema binario.




Seguimos con el ejemplo del cuentakilómetros visto arriba. En este caso las ruedas no tienen 10 símbolos (0 al 9) como en el caso del sistema decimal. En el sistema binario la base es 2, lo que quiere decir que sólo disponemos de 2 símbolos {0,1} para construir todos los números binarios.

En el sistema binario, para representar cifras mayores que 1 se combinan los 2 símbolos {0,1} y agrega una segunda columna de un orden superior.

Aquí las ruedas del cuentakilómetros dan una vuelta cada dos unidades. Por tanto, una vez que contamos (sumamos) dos hemos agotado los símbolos disponibles para esa columna, y debemos poner a cero la columna y usar otra columna a la izquierda.

Así, si contamos en binario, tras el número viene el , pero si contamos una unidad más debemos usar otra columna, resultando

Sigamos contando ,,,. Al añadir una unidad a la columna de las unidades, esa columna ha dado la vuelta (ha agotado los símbolos disponibles), y debemos formar una unidad de segundo orden, pero como ya hay una, también agotaremos los símbolos disponibles para esa columna, y debemos formar una unidad de tercer orden o . Así, en el sistema binario


Ejemplos:

  • El número está formado por un solo símbolo repetido tres veces. No obstante, cada uno de esos símbolos tiene un valor diferente, que depende de la posición que ocupa en el número. Así, el primer 1 (empezando por la izquierda) representa un valor de , el segundo de y el tercero de , dando como resultado el valor del número: .

Sistema de numeración octal

El sistema de numeración octal es también muy usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal.

El teorema fundamental aplicado al sistema octal sería el siguiente:



Como el sistema de numeración octal usa la notación posicional entonces para el número 3452,32 tenemos q: 2*80 + 5*81 + 4*82 + 3*83 + 3*8-1 + 2*8-2 = 2 + 40 + 4*64 + 3*512 + 3*0,125 + 2*0,015625 = 2 + 40 + 256 + 1536 + 0,375 + 0,03125 = 1834 + 40625d

Entonces, 3452,32q = 1834,40625d

El sub índice q indica número octal, se usa la letra q para evitar confusión entre la letra 'o' y el número 0. En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.

Es utilizado como una forma abreviada de representar números binarios que emplean caracteres de seis bits. Cada tres bits (medio carácter) es convertido en un único dígito octal. Okta es un término griego que significa 8.

Sistema de numeración hexadecimal

El sistema de numeración hexadecimal, de base 16, utiliza 16 símbolos. Es común abreviar hexadecimal como hex aunque hex significa base seis. Dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan: A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0,A(16) = 3×16^2 + E×16^1 + 0×16^0 + A×16^-1 = 3×256 + 14×16 + 0×1 + 10×0,0625 = 992,625. El sistema hexadecimal actual fue introducido en el ámbito de la computación por primera vez por IBM en 1963. Una representación anterior, con 0–9 y u–z, fue usada en 1956 por la computadora Bendix G-15 y algunas computadoras modernas.


Operaciones con sistemas de numeración

Resta binaria

Es similar a la decimal, con la diferencia de que se manejan sólo dos dígitos y teniendo en cuenta que al realizar las restas parciales entre dos dígitos de idéntica posiciones, una del minuendo y otra del sustraendo, si el segundo excede al primero, se sustrae una unidad del dígito de más a la izquierda en el minuendo (si existe y vale 1), convirtiéndose este último en 0 y equivaliendo la unidad extraída a 1*2 en el minuendo de resta parcial que estamos realizando. Si es cero el dígito siguiente a la izquierda, se busca en los sucesivos. Las tablas de Resta son: Tabla del 0 Tabla del 1 0 - 0 = 0 1 - 0 = 1 0 - 1 = no cabe 1 - 1 = 0

Ejemplo:

  • 111111-101010 = 010101

Multiplicación binaria

Se realiza similar a la multiplicación decimal salvo que la suma final de los productos se hacen en binarios.

Las tablas de Multiplicar son: Tabla del cero (0) 0 * 0 = 0 1 * 0 = 0 Tabla del uno (1) 0 * 1 = 0 1 * 1 = 1

Ejemplo:

  • 100=4
  • 10=2
  • 1000=8

División binaria

Al igual que las operaciones anteriores, se realiza de forma similar a la d

  • < 10 > = 2
  • < 11 > = 3
  • < 100 > = 4
  • < 101 > = 5
  • < 110 > = 6

En este sistema las multiplicaciones y sumas entre números enteros son muy sencillas.

Tabla de conversión entre decimal, binario, hexadecimal, octal, BCD, Exceso 3 y Gray o Reflejado

Decimal Binario Hexadecimal Octal BCD Exceso 3 Gray o Reflejado
0 0000 0 0 0000 0011 0000
1 0001 1 1 0001 0100 0001
2 0010 2 2 0010 0101 0011
3 0011 3 3 0011 0110 0010
4 0100 4 4 0100 0111 0110
5 0101 5 5 0101 1000 0111
6 0110 6 6 0110 1001 0101
7 0111 7 7 0111 1010 0100
8 1000 8 10 1000 1011 1100
9 1001 9 11 1001 1100 1101
10 1010 A 12 0001 0000 1111
11 1011 B 13 0001 0001 1110
12 1100 C 14 0001 0010 1010
13 1101 D 15 0001 0011 1011
14 1110 E 16 0001 0100 1001
15 1111 F 17 0001 0101 1000


Véase también