Diferencia entre revisiones de «Energía»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 201.221.60.58 (disc.) a la última edición de AVBOT
Línea 28: Línea 28:
**[[Energía calórica]], es la cantidad de energía que la unidad de masa de materia puede desprender al producirse una reacción química de oxidación.
**[[Energía calórica]], es la cantidad de energía que la unidad de masa de materia puede desprender al producirse una reacción química de oxidación.
**Energía potencial eléctrica, véase [[potencial eléctrico]].
**Energía potencial eléctrica, véase [[potencial eléctrico]].
**[[Energía eléctrica]], es el resultado de la existencia de una [[diferencia de potencial]] entre dos puntos. Además es de la que más se transforma
**[[Energía eléctrica]], es el resultado de la existencia de una [[diferencia de potencial]] entre dos puntos.


En [[termodinámica]]:
En [[termodinámica]]:

Revisión del 14:28 4 sep 2009

Un rayo es una forma de transmisión de energía.

El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos=fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento. En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural y la tecnología asociada para explotarla y hacer un uso industrial o económico del mismo.

El concepto de energía en física

La energía es una magnitud física abstracta, ligada al estado dinámico de un sistema cerrado y que permanece invariable con el tiempo. También se puede definir la energía de sistemas abiertos, es decir, partes no aisladas entre sí de un sistema cerrado mayor. Un enunciado clásico de la física newtoniana afirmaba que la energía no se crea ni se destruye, sólo se transforma.

La energía no es un estado físico real, ni una "sustancia intangible" sino sólo un número escalar que se le asigna al estado del sistema físico, es decir, la energía es una herramienta o abstracción matemática de una propiedad de los sistemas físicos. Por ejemplo, se puede decir que un sistema con energía cinética nula está en reposo.

El uso de la magnitud energía en términos prácticos se justifica porque es mucho más fácil trabajar con magnitudes escalares, como lo es la energía, que con magnitudes vectoriales, como la velocidad y la posición. Así, se puede describir completamente la dinámica de un sistema en función de las energías cinética, potencial y de otros tipos de sus componentes. En sistemas aislados, además, la energía total tiene la propiedad de "conservarse", es decir, ser invariante en el tiempo. Matemáticamente, la conservación de la energía para un sistema es una consecuencia directa de que las ecuaciones de evolución de ese sistema sean independientes del instante de tiempo considerado, de acuerdo con el teorema de Noether.

Energía en diversos tipos de sistemas físicos

Todos los cuerpos, poseen energía debido a su movimiento, a su composición química, a su posición, a su temperatura, a su masa y a algunas otras propiedades. En las diversas disciplinas de la física y la ciencia, se dan varias definiciones de energía, por supuesto todas coherentes y complementarias entre sí, todas ellas siempre relacionadas con el concepto de trabajo.

Física clásica

En mecánica:

En electromagnetismo se tiene:

En termodinámica:

  • Energía interna, suma de la energía mecánica de las partículas constituyentes de un sistema
  • Energía térmica, se le denomina energía térmica a la energía liberada en forma de calor, obtenida de la naturaleza (energía geotérmica), mediante la combustión

Física relativista clásica

En relatividad:

Física cuántica

En física cuántica, la energía es una magnitud ligada al operador hamiltoniano. La energía total de un sistema no aislado de hecho puede no estar definida: en un instante dado la medida de la energía puede arrojar diferentes valores con probabilidades definidas. En cambio, para los sistemas aislados en los que el hamiltoniano no depende explícitamente del tiempo, los estados estacionarios sí tienen una energía bien definida. Además de la energía asociadas a la materia ordinaria o campos de materia, en física cuántica aparece la energía del vacío, que es un tipo de energía existente en el espacio, incluso en ausencia de materia.

Química

En química aparecen algunas formas específicas no mencionadas anteriormente:

Si estas formas de energía son consecuencia de interacciones biológicas, la energía resultante es bioquímica, pues necesita de las mismas leyes físicas que aplican a la química, pero los procesos por los cuales se obtienen son biológicos, como norma general resultante del metabolismo (véase ATP).

Energía potencial

La energía potencial puede pensarse como la energía almacenada en un sistema, o como una medida del trabajo que un sistema puede entregar. Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

La energía potencial puede definirse solamente cuando existe un campo de fuerzas es conservativa, es decir, que cumpla con alguna de las siguientes propiedades:

  1. El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.
  2. El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.
  3. Cuando el rotor de F es cero (sobre cualquier dominio simplemente conexo).

Se puede demostrar que todas las propiedades son equivalentes (es decir que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial en un punto arbitrario se define como la diferencia de energía que tiene una partícula en el punto arbitrario y otro punto fijo llamado "potencial cero".

Magnitudes relacionadas

La energía se define como la capacidad de realizar un trabajo. Energía y trabajo son equivalentes y, por tanto, se expresan en las mismas unidades. El calor es una forma de energía, por lo que también hay una equivalencia entre unidades de energía y de calor. La capacidad de realizar un trabajo en una determinada cantidad de tiempo es la potencia.

Unidades de medida de energía

La unidad de energía en el Sistema Internacional de Unidades es el Julio, que equivale a Newton x metro.

Otras unidades:

La energía como recurso natural

En tecnología y economía, una fuente de energía es un recurso natural, así como la tecnología asociada para explotarla y hacer un uso industrial y económico del mismo. La energía en sí misma nunca es un bien para el consumo final sino un bien intermedio para satisfacer otras necesidades en la producción de bienes y servicios. Al ser un bien escaso, la energía es fuente de conflictos para el control de los recursos energéticos.

Referencias

  1. a b Introducir en Google "la abreviación de la unidad + joule", éste te dará el resultado de una conversión de la unidad a un joule
  2. Sizes, Inc. (ed.). «Board of Trade unit» (en inglés). Consultado el 6 de julio de 2009. 
  3. «Measurement unit conversion: cheval vapeur heure» (en inglés). Consultado el 6 de julio de 2009. «The SI derived unit for energy is the joule. 1 joule = 3.77672671473E-7 cheval vapeur heure». 
  4. unitconversion.org. «Joules to Poundal foots» (en inglés). Consultado el 6 de julio de 2009. 

Véase también

Enlaces externos