Diferencia entre revisiones de «Commelinidae»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Artículo bueno (buen trabajo, RoRo)
Línea 1: Línea 1:
{{Artículo bueno}}
{{Cladobox
{{Cladobox
| name = Commelinidae
| name = Commelinidae

Revisión del 11:44 1 feb 2009

Plantilla:Cladobox

Commelinidae (en español, "los comelínidos") es el nombre de un taxón de plantas ubicado en la categoría taxonómica de subclase, utilizado en sistemas de clasificación modernos como el sistema de clasificación APG II del 2003[1]​ (donde lo nombran en inglés, commelinids, sin ubicación en categoría taxonómica) y por el APWeb (2001 en adelante[2]​). En estos sistemas de clasificación este taxón se ubica en el clado monocotiledóneas (aquí ubicado en la categoría de clase), y es circunscripto por los órdenes Arecales, Zingiberales, Commelinales y Poales, y por la familia Dasypogonaceae (que a enero del 2009 todavía no fue asignada a ningún orden). El taxón como aquí circunscripto forma un grupo monofilético bien establecido tanto por caracteres morfológicos como por los análisis moleculares de ADN, por lo que su existencia se sospechaba desde hacía tiempo (pero en otros sistemas de clasificación populares como el de Cronquist de 1981,[3]​ la circunscripción era distinta, apróximandose al aquí definido Poales). Una aparente sinapomorfía química que une a todo el grupo es la presencia de ácidos fluorescentes a la luz ultravioleta (incluyendo ácidos cumáricos, ferúlicos y diferúlicos). Los comelínidos incluyen un número de plantas económicamente importantes, incluyendo a las palmeras (familia Arecaceae), el jengibre (en la familia Zingiberaceae), la banana (en la familia Musaceae), y los pastos y los cereales (en la familia Poaceae), entre muchos otros.

Caracteres

Sinapomorfías putativas incluyen las ceras epicuticulares de tipo Strelitzia, el polen con mucho almidón, paredes celulares sin lignificar e impregnadas con compuestos ácidos fluorescentes a la luz UV (ácidos ferúlicos, diferúlicos y cumáricos), y las hojas con cuerpos de sílice (SiO2 Dahlgren et al. 1985,[4]​ Harley y Ferguson 1990,[5]​ Barthlott y Fröhlich 1983,[6]​ Harris y Hartley 1980,[7]​ Zona 2001[8]​), también los estomas para o tetracíticos, la inflorescencia bracteada, los granos de polen con almidón, y el embrión corto y ancho (APWeb[2]​).

Las concentraciones de sílice en este clado son en general altas, aunque por supuesto no lo son en grupos que no tienen cuerpos de sílice, y aun así no siempre son altas (Ma y Takahashi 2002[9]​).

En Poaceae y Arecaceae al menos, las ligninas tienen alcohol p-cumaril ("p-coumaryl alcohol"), así como monómeros de coniferyl y sinapyl (Siegler 1998).

Si bien es común encontrar vasos en el tallo y las hojas (Wagner 1977[10]​), puede ser incorrecto tratarlos como una sinapomorfía.

En los pocos comelínidos en los que fue estudiado el desarrollo floral en detalle, la expresión del gen de función B ortólogo de PISTILLATA parece estar restringido a los estambres y estaminodios y a los pétalos (Adam et al. 2007[11]​), esto puede estar relacionado con la naturaleza del perianto en 2 verticilos que se encuentra en muchos miembros de este clado. En algunas de las pocas otras monocotiledóneas estudiadas, el desarrollo floral puede ser algo diferente.

El polen con almidón es común, pero no fue encontrado en Hanguanaceae ni en Dasypogonaceae (sólo una especie de esta última familia fue examinada) ni en algunas especies de Haemodoraceae, Bromeliaceae, etc.

Los embriones anchos pueden ser una sinapomorfía de este clado.

Ecología

Se han encontrado larvas de Nymphalidae-Morphinae y Satyrinae en este grupo (Ehrlich y Raven 1964[12]​), y también de Chrysomelidae-Hispinae+Cassidinae (Jolivet 1988,[13]​ Schmitt 1988,[14]​ Vencl y Morton 1999,[15]​ Chaboo 2007[16]​), pero estas últimas también han sido encontradas en otras monocotiledóneas. De las últimas, se encuontraron 14/39 tribus para las cuales hay al menos alguna planta comelínida que es hospedadora de sus larvas, mientras que 26/39 tribus eran huéspedes de alguna otra planta (Chaboo 2007;[16]​ estas larvas también fueron encontradas en Boraginaceae, Solanaceae, Convolvulaceae y Asteraceae, en particular, en el núcleo de las eudicotiledóneas - astéridas parecen prevalecer). No está claro si Criocerinae está en un clado inmediatamente relacionado con Hispinae y otros escarabajos afines que comen monocotiledóneas (ver Chaboo 2007;[16]​ comparar con Wilf et al. 2000[17]​ y Gómez-Zurita et al. 2007[18]​).

Se han encontrado larvas de Hemiptera-Lygaeidae-Blissinae que se alimentan de savia de (Zingiberales + Commelinales), si bien también se encuentran en otros Poales, especialmente en Poaceae (Slater 1976[19]​).

Diversidad

La diversidad taxonómica de las monocotiledóneas está presentada en detalle por Kubitzki (1998,[20]​ 2006[21]​).

A continuación se provee una lista de la diversidad de Commelinidae. Las descripciones son deliberadamente incompletas. Para más información siga los enlaces.

Hábito de Kingia australis.

Dasipogonáceas

Las dasipogonáceas son 4 géneros de plantas rizomatosas o arborescentes (por engrosamiento primario), con hojas de disposición espiralada con vaina bien desarrollada y las bases persistentes, y el perianto seco. Se distribuyen en el sudoeste de Australia y en Victoria.

Hábito de una palmera.

Arecáceas

Las arecáceas son fácilmente reconocibles, en general se corresponde con lo que la gente conoce como "palmeras". Casi todas son arborescentes (por engrosamiento primario), con tallo sin ramificar, y poseen las hojas pinadas o palmadas dispuestas en una roseta terminal. Sus flores, con sépalos y pétalos, están reunidas en inflorescencias ramificadas protegidas por una espata leñosa. Las palmeras están ampliamente distribuidas pero sobre todo en regiones cálidas.

Arecaceae es una de las familias de plantas de mayor importancia económica. Algunos ejemplos son el cocotero, la palmera datilera, el palmito, el ratán, la palmera de la que se extrae la cera de carnaúba, la rafia, y un gran número de especies ornamentales. Además muchas veces poseen una considerable importancia ecológica en los lugares donde se asientan.

Hábito del árbol del viajero.

Zingiberales

Zingiberales es un clado de 8 familias, entre sus miembros se encuentran el jengibre, la flor mariposa, la achira, el ave del paraíso, el árbol del viajero y el banano. Son hierbas de tamaño grande, con hojas claramente diferenciadas en pecíolo y lámina, muchas veces rotas entre las venas secundarias, las flores bilaterales (pero en clados más especializados sin plano de simetría), y las semillas con arilo.

Hábito del camalote.

Commelinales

Commelinales es un clado de 5 familias, entre sus miembros se encuentran la comelina, la tradescantia, la pontederia, y el camalote. Todas las familias poseen una inflorescencia que es una cima helicoide con muchas flores. Si bien la monofilia de Commelinales está bien sustentada por los análisis moleculares de ADN, sus sinapomorfías morfológicas aún son discutidas.

Hábito del Cyperus papyrus.

Poales

Poales es un importante clado de 18 familias, entre sus miembros se encuentran la totora, el ananá, el clavel del aire, el papiro, los juncos, el bambú, los pastos y los cereales. La polinización anemófila (por viento), con la pérdida de los nectarios septales, se ha desarrollado muchas veces en forma independiente dentro de los Poales.

Filogenia

El grupo como aquí circunscripto es monofilético en base a secuencias rbcL (Chase et al. 1993,[22]​ 1995b,[23]​ Duvall et al. 1993[24]​), a secuencias rbcL y atpB (Davis et al. 2004[25]​), a secuencias de regiones múltiples de ADN (Chase et al. 2000,[26]​ 2006,[27]​ Graham et al. 2006,[28]​ Soltis et al. 2000[29]​), y a la morfología (Dahlgren y Rasmussen 1983,[30]​ Stevenson et al. 2000[31]​). Ver también Givnish et al. (1999[32]​).

Aun antes de los análisis moleculares de ADN, la existencia de este clado fue largamente sospechada por algunos autores (Dahlgren et al. 1985[4]​) debido a la cantidad de caracteres que están presentes exclusivamente en estos taxones, ya enunciados en el apartado de caracteres.

El cladograma actualizado a la fecha, de la ubicación del clado dentro de las monocotiledóneas, y de las relaciones entre sus subclados, es el siguiente (actualizado según el APWeb[2]​ a enero del 2009):

Monocotyledoneae

Acorales (=Acoraceae)

Alismatales (incl. Araceae)

Petrosaviales (=Petrosaviaceae)

Dioscoreales

Pandanales

Liliales

Asparagales

Commelinidae
      

Dasypogonaceae

Arecales (=Arecaceae)

Poales

Commelinales

Zingiberales

Las relaciones entre los principales grupos de comelínidos todavía no están claras. Con respecto a qué clado sería el basal, los análisis de secuencias de ADN (Chase et al. 1993,[22]​ 1995b,[23]​ 2000,[26]​ Soltis et al. 2000[29]​) sugieren que las palmeras son el grupo hermano del resto de los miembros del clado: Poales, Commelinales, y Zingiberales. Sin embargo, en otros análisis moleculares (Chase et al. 2006,[27]​ Graham et al. 2006[28]​) las palmeras están anidadas dentro del clado commelinoide. Hilu et al. (2003[33]​), en base a la secuencia matK, sugirieron que Poales podría ser hermano del resto.

Dasypogonaceae fue ubicada aquí en base a sus caracteres que se corresponden con los del clado comelínido (Rudall y Chase 1996[34]​), aunque hubo autores anteriores que las asociaron con otros grupos de monocotiledóneas xeromórficas de Australia, como Xanthorrhoeaceae (como en Dahlgren et al. 1985[4]​), debido a sus similitudes en el hábito, o Laxmanniaceae (anteriormente Lomandraceae) como en Takhtajan (1997[35]​). Neyland analizando secuencias de ADNr (2002[36]​) encontró a Dasypogonaceae fuertemente asociada a Restionaceae y otras familias de Poales, pero esta relación particular no es sugerida por otros datos moleculares, y tampoco aparece en los anális morfológicos. Sin embargo, trabajos recientes que utilizan conjuntos de genes tampoco la asocian a Arecales, y aún cuando lo hacen es con apoyo bajo (Givnish et al. 2006[37]​ y Chase et al. 2006[27]​ la encuentran cerca de Poales, Graham et al. 2006[28]​ la encuentran cerca de (Commelinales + Zingiberales)).

Arecales a veces aparece como hermano de Poales (por ejemplo en Graham et al. 2006[28]​) pero con muy bajo apoyo. Arecaceae tiene endosperma sin almidón, Dahlgren et al. (1985[4]​) sugieren que puede representar una pérdida evolutiva. Si las palmeras son el clado basal de comelínidos, el endosperma con almidón puede ser en realidad una sinapomorfía del clado que comprende al resto de los órdenes.

Las posibles sinapomorfías morfológicas que unirían a (Poales (Zingiberales + Commelinales)) serían la pared primaria principalmente con glucurono-arabinoxylanos, los estomas paracíticos o tetracíticos, con las células vecinas con divisiones celulares paralelas, y el endosperma con almidón.

(Commelinales + Zingiberales) es un clado con fuerte apoyo (100 % de apoyo en los análisis multigén de Chase et al. 2006[27]​ y de Graham et al. 2006[28]​); si bien en estudios previos este grupo tuvo un apoyo más bien débil (por ejemplo en Chase et al. 2000,[26]​ en Davis et al. 2004,[25]​ en Givnish et al. 2006[37]​ con un solo gen). Las sinapomorfías morfológicas serían las inflorescencias indeterminadas, pero con ramificaciones de cimas helicoidales con muchas flores y el tapete invasivo o plasmodial.

Cronquist (1981[3]​) encontraba una similitud morfológica importante entre Arecaceae y Pandanaceae/Cyclanthaceae (estas dos últimas hoy en día están ubicadas en Pandanales, fuera de los comelínidos). Estas tres familias, que Cronquist (1981[3]​) reunió con algunas otras en la subclase Arecidae, comparten un hábito arborescente o herbáceo tipo enredadera, los estomas tetracíticos, los frutos indehiscentes y carnosos, y un desarrollo del embrión similar. Sin embargo, en Pandanaceae/Cyclanthaceae están ausentes todos los demás caracteres ya mencionados como sinapomorfías del clado comelinoide, así que no es sorprendente que no estén dentro de él. Este autor asoció Commelinidae con Zingiberidae, debido a que comparten su endosperma con almidón, con granos de almidón compuestos, y su perianto típicamente herbáceo diferenciado en sépalos y pétalos, en oposición a la presencia de tépalos de su circunscripción de Liliidae. Las demás familias que efectivamente eran comelínidos pero que Cronquist (1981[3]​) no asoció con Commelinidae/Zingiberidae fueron Dasypogonaceae, Hanguanaceae, Philydraceae, Pontederiaceae, y Haemodoraceae. Las últimas tres las consideraba miembros de Liliidae porque tienen tépalos grandes y aspecto de lirios.

Taxonomía

Sistema de clasificación APG II y APWeb

El sistema de clasificación APG II (2003[1]​) como también el APWeb[2]​ reconocen al clado al que llaman commelinids (aquí traducido como Commelinidae), sin asignar a ninguna categoría taxonómica, pero ubicado justo por arriba de los órdenes y justo por debajo de las monocotiledóneas. Los siguientes órdenes están circunscriptos en el clado:

Además está circunscripta dentro del clado la familia Dasypogonaceae, que a esa fecha aún no había sido identificada como miembro de ningún orden.

Sistema de Cronquist

El más antiguo sistema de Cronquist (1981[3]​) dividió a la subclase en siete órdenes:

Orden Commelinales:
Xiridáceas, familia Xyridaceae.
Comelináceas, familia Commelinaceae.
Orden Hydatellales:
Hidateláceas, familia Hydatellaceae.
Orden Typhales:
Esparganiáceas, familia Sparganiaceae.
Tifáceas, familia Typhaceae.
Orden Eriocaulales:
Eriocauláceas, familia Eriocaulaceae.
Orden Restionales:
Restionáceas, familia Restionaceae.
Orden Juncales:
Juncáceas, familia Juncaceae.
Orden Cyperales:
Ciperáceas, familia Cyperaceae.
Gramíneas, familia Poaceae.

La circunscripción de Commelinidae según Cronquist (1981[3]​) se aproxima al aquí circunscripto Poales, pero sin Bromeliaceae y con Commelinaceae (ahora en Commelinales) e Hydatellaceae (ahora en Nymphaeales). Según este autor, Arecales se encontraba en la subclase Arecidae, que no estaba relacionada con Commelinidae/Zingiberidae.

Evolución

Según Janssen y Bremer (2004[38]​), el "stem group" de los comelínidos está datado en unos 122 millones de años hasta el presente, la divergencia dentro de él habría empezado hace unos 120 millones de años. Según Wikström et al. (2001[39]​), utilizando una aproximación no paramétrica ("nonparametric rate smoothing approach") de Sanderson (1997[40]​), las fechas serían 107-98 millones de años para el "stem group", y 99-91 millones de años para la divergencia si Arecaceae es hermano del resto, 94-86 millones de años si Dasypogonaceae es hermano del resto. Según Bremer (2000[41]​), la fecha del "stem group" sería hace unos 116 millones de años, Arecaceae y Dasypogonaceae divergiendo casi inmeditamtente después, y Poales y el clado (Commelinales + Zingiberales) habrían divergido dentro de los 4 millones de años.

La tasa de evolución molecular en este clado es en general alta, de cerca de 0,003 sustituciones/sitio/millón de años (Smith y Donoghue 2008[42]​). Pero para algunos genes, al menos para ndhF, la tasa de evolución molecular es similar a la encontrada en Asparagales y otros clados (Givnish et al. 2006[37]​). Por otro lado, en Arecaceae los genes de los 3 compartimentos genómicos evolucionan lentamente (Wilson et al. 1990,[43]​ Baker et al. 2000a,[44]​ 2000b[45]​), pero la tasa parece ser no mucho menor a la que se encuentra en algunas otras monocotiledóneas, especialmente cuando no son comelínidas (Graham et al. 2005). Stevens en el APWeb[2]​ se pregunta si hubo un aumento en la tasa de cambio molecular dentro de algunos comelínidos, siendo algunos Poales ejemplos espectaculares de esto.

El "stem group" para el clado (Poales (Zingiberales + Commelinales)) dataría de unos 120 millones de años, y Poales habría divergido del resto hace unos 117 millones de años (Janssen y Bremer 2004[38]​).

El "stem group" de (Zingiberales + Commelinales) data de unos 116 millones de años hasta el presente, la divergencia de los dos clados habría sido hace unos 114 millones de años (Janssen y Bremer 2004[38]​), pero Wikström et al. (2001[39]​) indica 87-83 y 81-73 millones de años respectivamente, y Kress y Specht (2006Error en la cita: Etiqueta <ref> no válida; nombres no válidos, p. ej. demasiados) indica 124 y 110-80 millones de años respectivamente, y Bremer (2000[41]​), principalmente con calibraciones fósiles, los data en 108 y 84 millones de años respectivamente.

Importancia económica

Los commelínidos incluyen un número de familias económicamente importantes, entre ellas las palmeras (Arecales), el jengibre y la banana (Zingiberales), y los pastos (Poaceae). En particular la familia Poaceae es quizás la familia más importante de plantas, ya que entre ellos se encuentran los cereales.

Véase también

Bibliografía

  • Judd, W. S.; C. S. Campbell, E. A. Kellogg, P. F. Stevens, M. J. Donoghue (2007). Commelinoid Monocots. «Plant Systematics: A Phylogenetic Approach, Third edition.». Sinauer Associates (Sunderland, Massachusetts). pp. 276-278. ISBN 978-0-87893-407-2. 
  • Simpson, Michael G. (2005). Commelinidae. «Plant Systematics.». Elsevier Inc. p. 184. ISBN 0-12-644460-9 ISBN-13 978-0-12-644460-5. 
  • Soltis, D. E.; Soltis, P. F., Endress, P. K., y Chase, M. W. (2005). Commelinid monocots. «Phylogeny and evolution of angiosperms.». Sinauer Associates (Sunderland, MA). pp. 109-110. 

Referencias citadas

  1. a b APG II (2003). «An Update of the Angiosperm Phylogeny Group Classification for the orders and families of flowering plants: APG II.» (pdf). Botanical Journal of the Linnean Society (141): 399-436. Consultado el 06/06/2008. 
  2. a b c d e «Angiosperm Phylogeny Website (Versión 9, junio del 2008, y actualizado desde entonces)» (en inglés). 2001 en adelante. Consultado el 15 de enero de 2009.  Parámetro desconocido |último= ignorado (se sugiere |apellido=) (ayuda); Parámetro desconocido |primero= ignorado (se sugiere |nombre=) (ayuda)
  3. a b c d e f Cronquist, A. (1981). «An integrated system of classification of flowering plants.». Columbia University Press (Nueva York). 
  4. a b c d Dahlgren, R. M.; Clifford, H. T., Yeo, P. F. (1985). The families of the monocotyledons. (Springer-Verlag edición). Berlín. 
  5. Harley, M. M.; Ferguson, I. K. (1990). The role of the SEM in pollen morphology and plant systematics.. En D. Claugher, ed. «Scanning electron microscope in taxonomy and functional morphology. Systematics Association Special Vol. 41.». Clarendon Press (Oxford.). pp. 45-68. 
  6. Barthlott, W.; Fröhlich, D. (1983). «:Micromorphologie und Orientierungs muster epicuticularer Wachs-Kristalloide: ein neues systematisches Merkmal bei Monokotylen.». Plant Syst. Evol. (142): 171-185. 
  7. Harris, P. J.; Hartley, R. D. (1980). «:Phenolic constituents of the cell walls of monocotyledons.». Biochem. Syst. Ecol. (8): 153-160. 
  8. Zona, S. (2001). «:Starchy pollen in commelinoid monocots.» (pdf). Ann. Bot. II (87): 109-116. Consultado el 25 de febrero de 2008. 
  9. Ma, J. F.; Takahashi, E. (2002). «Soil, Fertilizer, and Plant Silicon Research in Japan.». Elsevier (Amsterdam). 
  10. Wagner, P. (1977). «Vessel types of the monocotyledons: A survey.». Bot. Notis. 130: 383-402. 
  11. Adam, H.; Jouannic, S., Morcillo, F., Verdeil, J.-L., Duval, Y., y Tregear, J. W. (2007). «Determination of flower structure in Elaeis guineensis: Do palms use the same homeotic genes as other species?». Ann. Bot. 100: 1-12. 
  12. Ehrlich, P. R.; Raven, P. H. (1964). «Butterflies and plants: A study in coevolution.». Evolution 18: 586-608. 
  13. Jolivet, P. H. (1988). Food habits and food selection of Chrysomelidae. Bionomic and evolutionary perspectives.. En Jolivet, P. H., Petitpierre, E., y Hsiao, T. H., ed. «Biology of Chrysomelidae.». Kluwer (Dordrecht). pp. 1-24. 
  14. Schmitt, M. (1988). The Cricerinae: Biology, Phylogeny, and evolution.. En Jolivet, P. H., Petitpierre, E., y Hsiao, T. H., ed. «Biology of Chrysomelidae.». Kluwer (Dordrecht). pp. 475-495. 
  15. Vencl, F. V.; Morton, T. C. (1999). Macroevolutionary aspects of larval shield defences.. En Cox, M. L., ed. «Advances in Chrysomelidae Biology 1.». Backhuys (Leiden). pp. 217-238. 
  16. a b c Chaboo, C. S. (2007). «Biology and phylogeny of the Cassidinae Gyllenhal sensu lato (tortoise and leaf-mining beetles) (Coleoptera: Chrysomelidae).». Bull. American Mus. Natural Hist. 305: 1-250. 
  17. Wilf, P..; Labandeira, C. C., Kress, W. J., Staines, C. L., Windsor, D. M., Allen, A. L., y Johnson, K. R. (2000). «Timing the radiations of leaf beetles: Hispines on gingers from latest Cretaceous to Recent.». Science 289: 291-294. 
  18. Gómez-Zurita, J.; T. Hunt, F. Kopliku y A. P. Vogler (2007). «Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores.». PLoS ONE 2: 360-. Consultado el 19 de abril de 2008. 
  19. Slater, J. A. (1976). «Monocots and chinch bugs: A study of host plant relationships in the Lygaeid subfamily Blissinae (Hemiptera: Lygaeidae).». Biotropica 8: 143-165. 
  20. Kubitzki, K., ed. (1998). «The families and genera of vascular plants, vol 3, Monocotyledons: Lilianae (except Orchidaceae).». Springer-Verlag (Berlin). 
  21. Kubitzki, K., ed. (2006). «The families and genera of vascular plants, vol 4, Monocotyledons: Alismatanae and Commelinanae (except Gramineae).». Springer-Verlag (Berlin). 
  22. a b Chase, M. W.; Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Jr., Graham, S. W., Barrett, S. C. H., Dayanandan, S., y Albert, V. A. (1993). «Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. (80): 528-580. Consultado el 25 de febrero de 2008. 
  23. a b Chase, M. W.; Stevenson, D. W., Wilkin, P., y Rudall, P. J. (1995b). «Monocot systematics: A combined analysis.». En Rudall, P. J., Cribb, P. J., Cutler, D. F., ed. Monocotyledons: Systematics and evolution. (Royal Botanic Gardens edición). Kew. pp. 685-730. 
  24. Duvall, M. R.; Clegg, M. T., Chase, M. W., Clark, W. D., Kress, W. J., Eguiarte, L. E., Smith, J. F., Gaut, B. S., Zimmer, E. A., y Learns Jr., G. H. (1993). «Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data.». Ann. Missouri Bot. Gard. (80): 607-619. Consultado el 25 de febrero de 2008. 
  25. a b Davis, J. I.; Stevenson, D. W.; Petersen, G.; Seberg, O.; Campbell, L. M.; Freudenstein, J. V.; Goldman, D. H.; Hardy, C. R.; Michelangeli, F. A.; Simmons, M. P.; Specht, C. D.; Vergara-Silva, F.; Gandolfo, M. (2004). «A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jacknife and bootstrap values.». Syst. Bot. (29): 467-510. Consultado el 25 de febrero de 2008. 
  26. a b c Chase, M. W.; Soltis, D. E., Soltis, P. S., Rudall, P. J., Fay, M. F., Hahn, W. H., Sullivan, S., Joseph, J., Molvray, M., Kores, P. J., Givnish, T. J., Sytsma, K. J., y Pires, J. C. (2000). «Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification.». En Wilson, K. L. y Morrison, D. A., ed. Monocots: Systematics and evolution. (CSIRO Publ. edición). Collingwood, Australia. pp. 3-16. 
  27. a b c d Chase, M. W.; Fay, M. F.; Devey, D. S.; Maurin, O; Rønsted, N; Davies, T. J; Pillon, Y; Petersen, G; Seberg, O; Tamura, M. N.; Lange, Conny Bruun Asmussen (Faggruppe Botanik); Hilu, K; Borsch, T; Davis, J. I; Stevenson, D. W.; Pires, J. C.; Givnish, T. J.; Sytsma, K. J.; McPherson, M. A.; Graham, S. W.; Rai, H. S. (2006). «Multigene analyses of monocot relationships : a summary» (pdf). Aliso (22): 63-75. ISSN: 00656275. Consultado el 25 de febrero de 2008. 
  28. a b c d e Graham, S. W.; Zgurski, J. M., McPherson, M. A., Cherniawsky, D. M., Saarela, J. M., Horne, E. S. C., Smith, S. Y., Wong, W. A., O'Brien, H. E., Biron, V. L., Pires, J. C., Olmstead, R. G., Chase, M. W., y Rai, H. S. (2006). «Robust inference of monocot deep phylogeny using an expanded multigene plastid data set.» (pdf). Aliso (22): 3-21. Consultado el 25 de febrero de 2008. 
  29. a b Soltis DE; PS Soltis, MW Chase, ME Mort, DC Albach, M Zanis, V Savolainen, WH Hahn, SB Hoot, MF Fay, M Axtell, SM Swensen, LM Prince, WJ Kress, KC Nixon, y JS Farris. (2000). «Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences.». Bot. J. Linn. Soc. (133): 381-461. Consultado el 25 de febrero de 2008. 
  30. Dahlgren, R. M. T.; Rasmussen, F. N. (1983). «Monocotyledon evolution: Characters and phylogenetic estimation.». Evol. Biol. (16): 255-395. 
  31. Stevenson, D. W.; Davis, J. I., Freudenstein, J. V., Hardy, C. R., Simmons, M. P., y Specht, C. D. (2000). «A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae.». En Wilson, K. L. y Morrison, D. A., ed. Monocots: Systematics and evolution. (CSIRO Publ. edición). Collingwood, Australia. pp. 17-24. 
  32. Givnish, T. J.; T. M. Evans, J. C. Pires, K. J. Sytsma (1999). «Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: Evidence from rbcL sequence data.». Molecular Phylogenetics and Evolution 12: 360-385. Consultado el 23 de marzo de 2008. 
  33. Hilu, K.; Borsch, T., Muller, K., Soltis, D. E., Soltis, P. S., Savolainen, V., Chase, M. W., Powell, M. P., Alice, L. A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T. A. B., Rohwer, J. G., Campbell, C. S., y Chatrou, L. W. (2003). «Angiosperm phylogeny based on matK sequence information.». American J. Bot. 90: 1758-1766. 
  34. Rudall, P. J.; Chase, M. W. (1996). «Systematics of Xanthorrhoeaceae sensu lato: evidence for polyphyly.». Telopea 6: 629-647. 
  35. Takhtajan, A. (1997). «Diversity and Classification of Flowering Plants.». Columbia University Press (New York). 
  36. Neyland, R.; Borsch, T., Muller, K., Soltis, D. E., Soltis, P. S., Savolainen, V., Chase, M. W., Powell, M. P., Alice, L. A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T. A. B., Rohwer, J. G., Campbell, C. S., y Chatrou, L. W. (2002). «A phylogeny inferred from large-subunit (26S) ribosomal DNA sequences suggests that the family Dasypogonaceae is closely aligned with the Restionaceae allies.». Australian Syst. Bot. 15: 749-754. 
  37. a b c Givnish, T. J.; Pires, J. C., Graham, S. W., McPherson, M. A., Prince, L. M., Patterson, T. B., Rai, H. S., Roalson, E. H., Evans, T. M., Hahn, W. J., Millam, K. C., Meerow, A. W., Molvray, M., Kores, P. J., O'Brien, H. E., Hall, J. C., Kress, W. J., y Sytsma, K. J. (2006). «Phylogeny of the monocots based on the highly informative plastid gene ndhF : Evidence for widespread concerted convergence.». Aliso 22: 28-51. 
  38. a b c Janssen, T.; Bremer, K. (2004). «The age of major monocot groups inferred from 800+ rbcL sequences.». Bot. J. Linnean Soc. 146: 385-398. 
  39. a b Wikström, N.; V. Savolainen, y M. W. Chase (2001). «Evolution of the angiosperms: calibrating the family tree.». Proceedings of the Royal Society of London B 268: 2211-2220. Consultado el 03/03/2008. 
  40. Sanderson, M. J. (1997). «A nonparametric approach to estimating divergence times in the absence of rate constancy.» (pdf). Molecular Biology and Evolution 14: 1218-1231. Consultado el 03/03/2008. 
  41. a b Bremer, K. (2000). «Early Cretaceous lineages of monocot flowering plants.» (pdf). Proceedings of the National Academy of Sciences USA 97: 4707-4711. Consultado el 03/03/2008. 
  42. Smith, S. A.; Donoghue, M. J. (2008). «Rates of molecular evolution are linked to life history in flowering plants.». Science 322: 86-89. 
  43. Wilson, M. A.; Gaut, B., y Clegg, M. T. (1990). «Chloroplast DNA evolves slowly in the palm family (Arecaceae).». Mol. Biol. Evol. 7: 303-314. 
  44. Baker, W. J.; Hedderson, T. A., y Dransfield, J. (2000). «Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data.». Mol. Phyl. Evol. 14: 195-217. 
  45. Baker, W. J.; Hedderson, T. A., y Dransfield, J. (2000). «Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on5S nrDNA spacer sequence data.». Mol. Phyl. Evol. 14: 218-231. 

Enlaces externos