Epicicloide
Ir a la navegación
Ir a la búsqueda
La epicicloide es la curva generada por la trayectoria de un punto perteneciente a una circunferencia (generatriz) que rueda, sin deslizamiento, por el exterior de otra circunferencia (directriz). Es un tipo de ruleta cicloidal.
Ecuación[editar]
Considerando la figura podemos escribir:
(1)
(2)
con y, además, como la circunferencia rueda sin deslizamiento, los arcos l1 y l2 son iguales, i.e: . De aquí se tiene que
Sustituyendo β y γ en las ecuaciones [1] y [2] tenemos la ecuación paramétrica de la epicicloide:
Casos particulares[editar]
Cuando es un número racional, i.e., , siendo p y q números enteros, las epicicloides son curvas algebraicas.
Cuando r1=r2, i.e, obtenemos una cardioide.
Cuando r1=2r2, i.e, obtenemos una nefroide.
Ejemplos[editar]
- ejemplos de epicicloides