Diferencia entre revisiones de «Elemento simétrico»

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
m (r2.7.1) (Bot Añadido: fi:Käänteisalkio)
Línea 41: Línea 41:


== Notación ==
== Notación ==
esto no sirve

=== Notación aditiva ===
=== Notación aditiva ===
Cuando la operación se denota por "+" (''más''), se denomina '''suma''' o '''adición'''.
Cuando la operación se denota por "+" (''más''), se denomina '''suma''' o '''adición'''.

Revisión del 17:55 4 nov 2012

En Álgebra abstracta, si tenemos conjunto en el que se ha definido una Operación matemática , que anotamos: , siendo la operación , interna en :

Con elemento neutro ,

Se dice que un elemento tiene:

elemento simétrico por la izquierda respecto de la operación si:

elemento simétrico por la derecha respecto de la operación si:

elemento simétrico respecto de la operación si existe un elemento simétrico por la izquierda y por la derecha, esto es:

Un elemento simétrico de es simétrico por la derecha del elemento y simétrico por la izquierda del elemento .

Notación

esto no sirve

Notación aditiva

Cuando la operación se denota por "+" (más), se denomina suma o adición.

la suma de Número entero: Z, es interna

En ese caso, al elemento neutro se le denomina cero y se le denota por "0",

y al elemento simétrico de se le denomina elemento opuesto de y se le denota por: .

Así partiendo de los números entero: Z, y la operación suma: +, tenemos que:

Notación multiplicativa

Cuando la operación se denota por "·" (por), se denomina producto o multiplicación. La multiplicación de Número racional: Q, es interna

En ese caso, al elemento neutro se le denomina uno o unidad y se le denota por "1":

y al elemento simétrico de se le denomina elemento inverso de y se le denota por o por

Partiendo de los números racional: Q y de la operación multiplicación, tenemos:

Véase también