Efecto Casimir

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Fuerzas de Casimir en placas paralelas

En física, el efecto Casimir o la fuerza de Casimir-Polder es un efecto predicho por la teoría cuántica de campos que resulta medible y consiste en que dados dos objetos metálicos, separados por una distancia pequeña comparada con el tamaño de los objetos, aparece una fuerza atractiva entre ambos debido a un efecto asociado al vacío cuántico.

Introducción[editar]

Fuerzas de Casimir en placas paralelas

El efecto Casimir se puede entender por la idea de que la presencia de metales conductores y dieléctricos alteran el valor esperado del vacío para la energía del campo electromagnético cuantizado. Puesto que el valor de esta energía depende de las formas y de las posiciones de los conductores y de los dieléctricos, el efecto Casimir se manifiesta como fuerza entre tales objetos.

A veces, esto se describe en términos de partículas virtuales que interaccionan con los objetos, debido a una de las formulaciones matemáticas posibles para calcular la fuerza del efecto. Como la intensidad de la fuerza cae rápidamente con la distancia, es solamente medible cuando la distancia entre los objetos es extremadamente pequeña. En una escala por debajo del micrómetro, esta fuerza llega a ser tan fuerte que se convierte en la fuerza dominante entre dos conductores neutros. De hecho en separaciones de 10 nanómetros, el efecto Casimir produce el equivalente de 1 atmósfera de presión (101.3 kPa).

Los físicos holandeses Hendrik B.G. Casimir y Dirk Polder fueron los primeros en proponer la existencia de esta fuerza en 1948 y formularon un experimento para detectarla mientras participaban en la investigación en los laboratorios de investigación de Philips. La forma clásica del experimento utiliza un par de placas paralelas de metal neutras en el vacío, y demostró con éxito la fuerza dentro del 15% del valor predicho por la teoría.

La fuerza de Van der Waals entre un par de átomos neutros es un efecto similar. En la física teórica moderna, el efecto Casimir desempeña un papel importante en el modelo quiral del nucleón; y en física aplicada, es cada vez más importante en el desarrollo de componentes nanotecnológicos. [1]

Energía del vacío[editar]

Diagrama de Feynman ilustrando la interacción entre dos electrones producida mediante el intercambio de un fotón.

El efecto Casimir es un resultado de la teoría cuántica de campos, que indica que todos los campos fundamentales, tales como el campo electromagnético, deben ser cuánticos en cada punto del espacio. De manera muy simple, un campo en la física puede ser previsto como si el espacio estuviera lleno de bolas y de resortes que vibraran interconectados, y la fuerza del campo se puede visualizar como la dislocación de una bola de su posición de reposo. Las vibraciones en este campo se propagan y están gobernadas por la ecuación de onda apropiada para el campo particular. El campo electromagnético cuantizado en la teoría cuántica de campos requiere que cada combinación bola-resorte sea cuántica, es decir, que la fuerza del campo será cuántica en cada punto en espacio. Canónicamente, el campo en cada punto del espacio es un oscilador armónico simple. Las excitaciones del campo corresponden a partículas elementales de la física de partículas. Sin embargo, incluso el vacío tiene una estructura sumamente compleja. Todos los cálculos de la teoría cuántica de campos se deben hacer referentes a este modelo de vacío.

El vacío tiene, implícito, todas las características que una partícula pueda tener: spin, polarización en el caso de la luz, energía, y así sucesivamente. En promedio, todas estas características se cancelan: el vacío es después de todo, vacío en este sentido. Una excepción importante es la energía del vacío o el valor de la expectativa de la energía del vacío. La cuantización de un oscilador armónico simple indica que la energía posible más baja o la energía del punto cero que tal oscilador puede tener es:

{E} = \begin{matrix} \frac{1}{2} \end{matrix} \hbar \omega

Al sumar sobre todos los osciladores posibles en todos los puntos en espacio da una cantidad infinita. Para quitar este infinito, uno puede decir que solamente las diferencias en energía son físicamente mensurables; este principio es la base de la teoría de la renormalización. En los cálculos prácticos, así es cómo el infinito se maneja siempre. En un sentido más profundo, sin embargo, la renormalización no es satisfactoria, y el eliminar este infinito es uno de los desafíos en la búsqueda de una teoría del todo. No hay actualmente una explicación fuerte sobre cómo este infinito se debe tratar como esencialmente cero; un valor diferente a cero es esencialmente la constante cosmológica y cualquier valor grande causa problemas en la cosmología. [2]

Interpretaciones[editar]

Stephen Hawking en su obra El universo en una cáscara de nuez da dos explicaciones posibles y, tal vez, complementarias:

  • Una hace referencia al campo electromagnético cuantizado, que se describe como un conjunto de infinitos osciladores armónicos simples cuya oscilación crea las ondas electromagnéticas. En su estado fundamental estos osciladores poseen algo de energía debido al principio de incertidumbre de Heisenberg. Como cada oscilador sólo se corresponde con una frecuencia y tenemos infinitos osciladores en cada punto del espacio, en una cantidad finita de espacio hay una cantidad infinita de dichos osciladores, y sumando la energía media de dichos osciladores obtenemos una cantidad infinita de energía en cada punto del espacio. Al colocar unas placas metálicas plano paralelas en el espacio, estas limitan la cantidad de longitudes de onda que caben entre ellas, creando una diferencia de energía entre el exterior y el interior de las placas. Entre ambas placas sigue habiendo una cantidad infinita de energía, pero aun así es inferior al infinito exterior.
  • La otra se basa en el número de "historias en bucle cerrado" de partículas subatómicas. Entre ambas placas hay menos espacio para que estas historias tengan lugar que en el exterior, luego las historias exteriores crearían una diferencia de presión entre las placas que tendería a juntarlas.

Cálculo de Casimir[editar]

En el cálculo original realizado por Casimir, éste consideró el espacio libre entre un par de placas conductoras paralelas separadas una distancia a. En este caso, las ondas estacionarias son particularmente fáciles de calcular, ya que la componente transversal del campo eléctrico y la componente normal del campo magnético deben anularse en la superficie de un conductor. Asumiendo que las placas paralelas residen en el plano x-y, las ondas estacionarias son:

\psi_n(x,y,z,t) = e^{-i\omega_nt} e^{ik_xx+ik_yy} \sin \left( k_n z \right)

donde \psi aparece por la componente eléctrica del campo electromagnético, y, como simplificación, la polarización y las componentes magnéticas son despreciadas. Aquí, k_x y k_y son las componentes del vector de onda en direcciones paralelas a las placas, y

k_n = \frac{n\pi}{a}

es el vector de onda perpendicular a las mismas. Así pues, n es un número entero, que aparece debido a la ligadura de que ψ se anule en las placas metálicas. La frecuencia para esta onda es:

\omega_n = c \sqrt{{k_x}^2 + {k_y}^2 + \frac{n^2\pi^2}{a^2}}

donde c es la velocidad de la luz. La energía del vacío es entonces la suma sobre todos los posibles modos de excitación

\langle E \rangle = \frac{\hbar}{2} \cdot 2
\int \frac{dk_x dk_y}{(2\pi)^2} \sum_{n=1}^\infty A\omega_n

donde A es el área de las placas de metal, siendo un factor 2 introducido debido a las dos posibles polarizaciones de la onda. Esta expresión es claramente infinita, y para poder realizar el cálculo, es conveniente introducir un regulador. El regulador servirá para hacer que la expresión se vuelva finita, eliminándolo del cálculo en pasos posteriores. La versión regularizada de la función zeta de la energía por unidad de área en la placa es:

\frac{\langle E(s) \rangle}{A} = \hbar 
\int \frac{dk_x dk_y}{(2\pi)^2} \sum_{n=1}^\infty \omega_n 
\vert \omega_n\vert^{-s}

Al final del cálculo, se debe considerar el límite s\to 0. Aquí s es simplemente un número complejo, y no debe confundirse con variables así denotadas con anterioridad. Esta integral/suma es finita para s real y mayor que 3. La suma posee un polo en s=3, pero puede ser analíticamente extensible a s=0, donde la expresión es finita. Expadiendo esto, se obtiene

\frac{\langle E(s) \rangle}{A} = 
\frac{\hbar c^{1-s}}{4\pi^2} \sum_n \int_0^\infty 2\pi qdq 
\left \vert q^2 + \frac{\pi^2 n^2}{a^2} \right\vert^{(1-s)/2}

donde se han introducido las coordenadas polares q^2 = k_x^2+k_y^2 para transformar nuestra integral doble en una integral simple. La q es el jacobiano, y el 2\pi proviene de la integración angular. Esta integral se puede calcular fácilmente, resultando

\frac{\langle E(s) \rangle}{A} = 
-\frac {\hbar c^{1-s} \pi^{2-s}}{2a^{3-s}} \frac{1}{3-s}
\sum_n \vert n\vert ^{3-s}

Esta suma se puede interpretar como la función zeta de Riemann, de forma que

\frac{\langle E \rangle}{A} = 
\lim_{s\to 0} \frac{\langle E(s) \rangle}{A} = 
-\frac {\hbar c \pi^{2}}{6a^{3}} \zeta (-3)

Sabiendo que \zeta(-3)=1/120, se obtiene

\frac{\langle E \rangle}{A} = 
\frac {-\hbar c \pi^{2}}{3 \cdot 240 a^{3}}

La fuerza de Casimir por unidad de área F_c / A para placas ideales y perfectamente conductoras con vacío entre ambas es, por lo tanto

{F_c \over A} = -
\frac{d}{da} \frac{\langle E \rangle}{A} =
-\frac {\hbar c \pi^2} {240 a^4}

donde

\hbar (h barra, ħ) es la constante reducida de Planck,
c es la velocidad de la luz,
a es la distancia entre dos placas.

La fuerza es negativa, indicando pues el carácter atractivo de la misma: disminuyendo la distancia entre placas, la energía es reducida. La presencia de \hbar indica que la fuerza de Casimir por unidad de área F_c / A es muy pequeña, siendo su origen puramente inherente a la mecánica cuántica.

Medición experimental[editar]

Uno de las primeras pruebas experimentales la realizó Marcus Spaarnay en Philips en Eindhoven, en 1958, en un experimento delicado y difícil con placas paralelas, obteniendo resultados que no estaban en contradicción con la teoría de Casimir, pero que tenían errores experimentales grandes.

El efecto Casimir se midió de forma más precisa en 1997 por Steve K. Lamoreaux del laboratorio nacional de Los Álamos y por Umar Mohideen de la Universidad de California en Riverside y su colega Anushree Roy. En la práctica, en vez de usar dos placas paralelas, las cuales requieren un alineamiento demasiado preciso para asegurar que son paralelas, los experimentos usaron una placa que es plana y otra placa que es parte de una esfera con un amplio radio de curvatura. En el 2001, otro grupo de la Universidad de Padua consiguió finalmente medir la fuerza de Casimir entre placas paralelas usando microrresonadores.

Más investigaciones han mostrado que con materiales de cierta conductividad y permeabilidad, o con una cierta configuración, el efecto Casimir se puede hacer repulsivo en vez de atractivo, aunque no hay aún pruebas experimentales de tales predicciones.

Referencias[editar]

  1. Cuentos Cuánticos (2011). «El Controvertido Efecto Casimir» (en español). Consultado el 27 de Noviembre de 2013.
  2. AstroMía (2012). «Efecto Casimir» (en español). Consultado el 27 de Noviembre de 2013.

Bibliografía[editar]

  • Elizalde, Emilio, "El efecto Casimir", Investigación y Ciencia, 390, marzo de 2009, págs. 54-63.

Enlaces externos[editar]

Véase también[editar]