Dirección (automóvil)

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Detalle del mecanismo de dirección de un Ford T de 1925
Esquema de un sistema de dirección tipo Ackerman. (1:Volante; 2: Columna de dirección; 3: Engranaje de la dirección; 4A: Brazo de mando; 4B: Brazo tensor; 5: Tirante central; 6: Tirante interno; 7: Mangueta de ajuste; 8: Brazos de los tirantes)

La dirección es el conjunto de órganos que permiten a cualquier vehículo variar su trayectoria para seguir el rumbo deseado. Para esta finalidad en general los sistemas de dirección utilizan las ruedas del vehículo, bien modificando su orientación (como en un automóvil), disminuyendo su circunferencia (como en una motocicleta, donde la inclinación provoca el apoyo del neumático por la parte próxima a la llanta), o mediante el giro diferencial (como en sillas de ruedas o vehículos oruga, donde el cambio de dirección se produce por la diferente velocidad de giro de las ruedas de uno y otro lado). Una excepción es el caso del ferrocarril, en el que la dirección es controlada por medio de raíles y desvíos. La función primaria de todo sistema de dirección es permitir al conductor guiar el vehículo.

En los vehículos con sistemas de dirección basados en el cambio de orientación de las ruedas, al actuar sobre el volante (o manillar) el conductor cambia el ángulo de deriva (ángulo entre el plano de la rueda y la trayectoria de la rueda) de la o las ruedas directrices. La fuerza creada entre la carretera y el eje de giro hace girar el vehículo.

Historia[editar]

Ruedas, ejes y bujes[editar]

La historia de la dirección discurre paralela a la invención de la rueda y su aplicación al transporte.

dibujo de la Olla de Bronocice, primera representación de un carro

En la naturaleza no existen ruedas y de hecho muchas civilizaciones -como las mesoamericanas- nunca llegaron a utilizarlas. Una posible razón está en el aumento de efectividad asociado al empleo de elementos rotatorios frente a los deslizantes o a cargar directamente el animal. Los animales de tiro disponibles en la Eurasia de la edad de bronce -onagros, pequeños caballos o uros- no eran adecuados para su monta, sin embargo gracias al grado de doma alcanzado y a lo favorable del terreno, el uso de carros aumentaba exponencialmente su efectividad. Por el contrario, en sociedades en las que el terreno es desfavorable -selvas o desiertos-, o donde los animales disponibles son adecuados para la monta -elefantes o dromedarios- o están insuficientemente domesticados -llamas-, esta ventaja es marginal.

Pese a sus ventajas, la invención de la rueda fue proceso relativamente tardío [1]. La razón está en la necesidad de contar con una industria del metal lo suficientemente desarrollada para permitir su manufactura. Si bien es conocido el uso que algunas sociedades hicieron de dispositivos rotatorios como hileras de troncos dispuestos bajo un trineo para facilitar su desplazamiento, el proceso hacia la invención de la rueda y el eje no es obvio. La viabilidad del transporte rodado depende de la gestión de la fricción y la de torsión a la que somenten los ejes y de la fabricación de componentes fiables para su fijación al carro y a las ruedas, lo que requiere un determinado grado de desarrollo tecnológico

Las primeras ruedas conocidas no se aplicaron al transporte sino a la alfarería. Se trata de las ruedas mesopotámicas o tornos de alfarero, precedentes del torno, una de las máquinas simples conocidas en la antigüedad. El torno de alfarero requiere que la rueda o disco de inercia se acople solidariamente a un clindro que pueda girar libremente en torno a su eje, para lo que previamente debieron resolverse los problemas de la fricción y la fijación a la mesa de trabajo, los primeros ejemplos datan del 3800 A.C.

Trescientos años después aparecen en Mesopotamia conjuntos de rueda y eje solidario cuyo uso parece estar destinado al transporte, para ser fijadas en este caso en horizontal, probablemente mediante bandas de cuero al carro. La primera representación de un carro con ruedas es casi simultánea, se trata de la Olla de Bronocice -actual Polonia-, lo que hace pensar en una rápida difusión de la rueda por las estepas europeas. En la cerámica aparece un carro de dos ejes con un tipo primitivo de yugo, antecedente del primer sistema de dirección. En el mismo emplazamiento se encontraron restos de uros cuyos cuernos mostraban el desgaste propio de haber sido utilizados para la fijación con cuerdas al yugo.

A medida que la rueda se expande por las planicies de Eurasia, comienza la dispersión entre las culturas [2]que utilizan el conjunto de rueda y eje mesopotámico -Sitios palafíticos prehistóricos de los Alpes, como la rueda de Ljubljana- de aquellas que utilizan ejes fijos al carro y ruedas con buje engrasado -Cultura de Baden como la rueda de Ubbena[3]-. Los primeros necesitaban ejes solidarios muy cortos de apenas un metro de anchura construidos en maderas duras y ruedas grandes. La razón es la relación de palanca -apalancamiento- entre los diámetros de la rueda y el eje. Cuanto máyor sea esta relación, más fácil será vencer la resistencia derivada de la fricción del mecanismo de sujección del eje, pero también será mayor la demanda de torsión al que el eje es sometido, por lo que de ser largo podía llegarse a partir. Se utilizaban en carros de dos ejes en los que el conductor caminaba junto al animal de tiro al que dirigía con cuerdas. Las ruedas con cubos o bujes podían utilizarse en carros sin restricción de anchura o incluso acoplarse a trineos ligeros -travois-, pero su construcción era más difícil y las cargas a transportar menores, utilizándose generalmente en carros rápidos de un eje, en los que el conductor podía ir subido.

Ejes orientables: pivote central y rueda de dirección[editar]

En azul: eje de un carruaje tirado por caballos.

La solución obvia para conseguir un sistema de ruedas orientables en un vehículo de dos o más ejes es permitir el giro del primer eje sobre un sobre un eje de pivote vertical o rueda de dirección -turntable o fifth wheel en inglés-. El sistema se utilizó en carros de dos ejes, de modo que los caballos podían tirar del carro desde los lados en curvas haciendo que el vehículo girase sobre su último eje.

Vehículo articulado[editar]

Un sistema alternativo consistía en articular el propio vehículo en dos partes, cada una de las cuales estaba unida sólidamente al eje en el que se apoyaba obteniéndose un comportamiento similar al de vehículos con ejes orientables.

Ejes orientables con bujes[editar]

Los ejes solidarios orientables ofrecen un resultado aceptable para dirigir las ruedas delanteras de un carro de dos ejes, permitiendo al animal tirar del carro desde los lados. Sin embargo no dan respuesta al problema que de cara a la estabilidad supone unir ambas ruedas, forzándolas a girar al mismo número de revoluciones.

Clement-Panhard (1899) con un único eje de pivote central

En un eje formado por dos ruedas, el radio de la curva trazado por la rueda interior es más cerrado que el ángulo trazado por la exterior y por tanto la distancia recorrida por la rueda será menor. Si ambas ruedas están unidas solidamente, ninguna de las dos girará al número de revoluciones correspondiente con la distancia recorrida, de modo que cada rueda será continuamente arrastrada por la otra y el eje estará sujeto a una torsión mecánica que puede partirlo.

La solución vino de mano de los "ejes rotos", gracias a un avance técnico -el buje o cubo-, que permite a cada rueda girar libremente en sus extremos -ruedas "locas" o desacopladas (loose wheels en inglés)-, haciendo posible que el eje pueda efectuar giros tan cerrados como sea necesario. Las ruedas con bujes -inicialmente cojinetes lisos, con materiales como la lana impregnada en lanolina para reducir la fricción- son conocidas desde antiguo, pero a diferencia de los ejes solidarios se trataba de elementos de alta tecnología y elevadísimo precio, utilizadas casi exclusivamente en carros de guerra de dos ruedas, conocidos hoy por ser habituales en el ajuar funerario de muchos pueblos. Un ejemplo de este tipo de dirección lo encontramos en las sillas de ruedas, que pueden girar incluso sobre su propio eje haciendo girar una rueda principal en sentido contrario a la otra.

La combinación de estos dos avances, el eje orientable junto con las ruedas desacopladas, supuso una ventaja definitiva de cara a la estabilidad, haciendo posible por fin la aparición de vehículos rápidos de dos ejes. Esta ventaja se debe a que cuando el operador de la dirección dirige el volante o el animal de tiro hacia un punto, las dos ruedas directrices se orientan naturalmente hacia el. Esto es así porque geométricamente sus bujes están unidos sólidamente por el eje, formando una línea, que si es prolongada hasta el punto en que se corte con la prolongación del eje trasero nos dará un punto denominado centro del radio de giro, que es el punto en torno al que gira el vehículo de dos ejes. El sistema de eje roto se llegó a aplicar incluso a los primeros automóviles como el Clement-Panhard.

Sin embargo el sistema es inadecuado cuando la vía -el ancho- del eje es elevada, puesto que en curvas cerradas la batalla -o distancia entre la rueda delantera y trasera- aumentará mucho en el lado exterior de la curva disminuyendo en el interior, lo que perjudica la estabilidad y complica su interacción con un sistema de suspensión, siendo imposible utilizarse en suspensiones independientes.

Por esta razón los vehículos de tiro rápidos como los carros de guerra solían contar con un solo eje y en muchos vehículos de motor pioneros aún se empleaban direcciones mediante una sola rueda.

Geometría de dirección de Ackermann[editar]

Geometría de dirección de Ackermann.

Para superar los problemas inherentes a las direcciones por un solo eje surgieron las direcciones de dos semiejes o "cuadriláteros articulados".

Estos sistemas se basan en otro avance técnico, el pivote de dirección, derivado del buje que permite no solo que cada rueda pueda girar independientemente de la otra, sino también que pueda pivotar sobre su propio eje de pivote. El sistema se denomina el "cuadrilátero" por que está constituido por cuatro elementos, el eje delantero, una "barra" de dirección situada por detrás de este -habitualmente la propia cremallera- y dos "tirantes" o semiejes articulados que unen esta barra con los pivotes de dirección de cada una de las ruedas. La geometría de dirección de Ackermann es una determinada disposición geométrica de estos cuatro elementos, descrita por primera vez por el constructor de transporte alemán "Lankensperger" en 1817 para coches de caballos y patentada por su agente en Inglaterra Rudolph Ackermann (1764-1834) en 1818. Aunque existen precedentes, como los estudios sobre sistemas de dirección mejorada para carruajes publicados por Erasmus Darwin en 1758 [1]​ (ya con un eje fijo y las ruedas pivotando paralelas en torno a vástagos -spindles- interconectados), su forma definitiva no apareció hasta las patentes de Karl Benz (1893) y de Edward Butler (1897).

Diseñada en su concepción actual para lograr que la rueda interior y exterior tracen círculos de diferentes radios, el sistema original fue concebido intuitivamente para mantener las ruedas paralelas, lo que resultó ser inadecuado. El problema es que a diferencia de los sistemas basados en un único pivote de dirección central, en los que el eje se desplaza coincidiendo con el radio de la circunferencia de ambas ruedas, aquí el eje permanece fijo. Esto implica que para que ambos pivotes se orienten al centro del radio de giro, cada uno debe hacerlo en un grado ligeramente distinto del otro debido a la anchura del propio eje. De mantenerse paralelos, ninguno de los pivotes se orientaría a ese punto común sino que se dirigirían a dos puntos separados precisamente por la anchura del eje y el vehículo giraría en torno a un punto intermedio entre ambos, con el resultado de que también en este caso cada rueda será continuamente arrastrada por la otra, perjudicando la estabilidad.

L'Obéissante - 1875

La hoy denominada geometría de Ackermann resolvió definitivamente el objetivo de alinear cada pivote con el radio de su circunferencia de una manera simple y efectiva. La solución vino de la mejora conocida como trapecio de Jeantaud, que hizo posible dirigir de modo coordinado cada rueda en la dirección elegida por el conductor, simplemente alineando los tirantes con el centro del eje trasero en lugar de ser paralelos entre sí. De este modo se lograba el objetivo de hacer que la rueda interior adoptara un ángulo más cerrado que la exterior, puesto que el tirante interior transmite un movimiento mayor que en la exterior.

Un ejemplo de temprana utilización de esta mejora se encuentra en el sistema de dirección diseñado por Onésiphore Pecqueur para L'Obéissante, vehículo de vapor de Amedee Bollee[4] ya con suspensión independiente y dirección por cremallera.

Dirección tradicional con brazo Pitman de accionamiento longitudinal en un vehículo industrial

Los vehículos actuales rara vez recurren a una geometría de Ackermann "pura", siendo habitual jugar con los ángulos de las ruedas interior y exterior para aumentar el agarre o minimizar el desgaste.[2]

Evolución hacia la suspensión independiente[editar]

- Sistemas de dirección en suspensiones dependientes.

A principios del siglo XX la geometría de dirección de ackermann se había implantado universalmente en todo tipo de vehículos, que en su gran mayoría seguían utilizando suspensiones mediante eje rígido en ambos trenes. En este tipo de suspensión delantera, hoy solo presente en vehículos industriales y algunos todo terrenos de gran tamaño, el recorrido de suspensión de cada rueda está necesariamente ligado al de la otra, por lo que la distancia entre sus pivotes de dirección no se verá afectada por el trabajo de la suspensión. Esta característica permitió la rápida difusión de las direcciones basadas en cuadriláteros articulados puesto que sin interferencia de la suspensión, el pivote de dirección trabajaba en un único grado de libertad, lo que era de crucial importancia hasta la aparición de las rótulas; el sistema constaba de:

Sistema de palanca acodada utilizado con las primeras suspensiones independientes
Sistema actual de piñón y cremallera
  • Los pivotes de dirección de las ruedas directrices que pivotan en torno a un eje geométrico próximo a la vertical.
  • El volante y su eje (o columna de dirección)
  • La caja de dirección formada por tornillo sin fin encargado de transformar el movimiento de rotación del eje del volante en movimiento de translacción
  • El brazo Pitman o brazo de mando engranado a la caja de dirección gira sobre su eje hacia delante o atrás al girar la dirección.
  • La biela de dirección dispuesta longitudinalmente conecta el brazo de mando con uno de los pivotes de dirección.
  • Los brazos de acoplamiento o tirantes conectados a los pivotes y unidos entre sí por una barra de acoplamiento formando junto con el puente delantero el cuadrilátero articulado conocido como geometría de Ackermann

- Sistemas de dirección en suspensiones independientes previos a la aparición de rótulas.

Dirección en una suspensión Dubonnet.

Al hacerse patente la necesidad de un sistema de suspensión independiente en el eje directriz los constructores debieron hacer frente al desafío que suponía permitir variaciones de vía -distancia entre el centro de las dos ruedas de un eje- sin que ello afectara a la dirección. La solución consistió en dividir el mecanismo de dirección en dos partes, una sujeta a la masa suspendida del vehículo y otra a la masa no suspendida.

En comparación con el sistema de dirección empleado en vehículos con eje rígido, la biela longitudinal de dirección no se conectaba a uno de los pivotes de dirección, si no a una palanca de ataque que giraba sobre un punto fijado en el chasis -masa suspendida- del vehículo. De esta palanca salían dos semibarras de acoplamiento articuladas conectadas a la masa no suspendida -los pivotes de dirección -, siendo el conjunto -conocido como varillaje de dirección- capaz de absorber el movimiento de la suspensión sin afectar al viraje del vehículo.

Una notable excepción a este sistema fue la suspensión Dubonnet. En este tipo de suspensión el vástago de la rueda se sitúa en el extremo de una biela que comprime un conjunto de muelle y amortiguador encapsulado en un contenedor horizontal fijado al pivote de dirección. De este modo tanto el contenerdor como la biela giran con la dirección, por lo que las barras que accionan los pivotes de dirección los atacan directamente, sin el complicado varillaje de los sistemas de la época, por lo que no están sujetas a ningún movimiento que deba absorber la suspensión.

Técnica actual[editar]

Cremallera del sistema de dirección de un automóvil: 1: volante; 2: columna de dirección; 3: piñón y cremallera; 4:tirante articulado mediante rótulas; 5: mangueta

En la actualidad el sistema de dirección empleado por prácticamente todos los turismos, vehículos industriales ligeros, todocaminos y la mayoría de los todoterrenos utiliza rótulas para conectar las manguetas con los brazos de la suspensión y con los tirantes de la dirección. Gracias a los tres grados de libertad que permiten estas uniones se puede fácilmente independizar el movimiento vertical de la suspensión del horizontal de la dirección. Estos sistemas, mucho más compactos, emplean por lo general una barra de dirección transversal e incluyen:

  • Las manguetas
  • El volante y la columna de dirección habitualmente articulada.
  • La caja de dirección y barra de dirección en un único módulo, generalmente formado por la propia cremallera de dirección o en algunos casos por un sistema de recirculación a bolas y barra de dirección.
  • Los brazos de acoplamiento o tirantes conectados mediante rótulas a la masa suspendida -barra de dirección o cremallera- y a la masa no suspendida -manguetas o portamanguetas-.
  • Las rótulas, tipo de unión que permite independizar el movimiento vertical de la suspensión del horizontal de la dirección.

4 ruedas directrices (4RD)[editar]

Los dos modos de una dirección a las 4 ruedas

Para mejorar las capacidad de control de un vehículo de cuatro ruedas es fácil comprender las ventajas que proporciona un sistema de dirección a las cuatro ruedas o incluso un sistema con dirección y tracción a todas las ruedas, como los que se desarrollaron para algunos tractores militares ya en la Primera Guerra Mundial.

Las cuatro ruedas pueden ser dirigidos en direcciones opuestas en la misma curva (permitiendo reducir el radio de giro del vehículo) o en la misma dirección (aumentando la capacidad de maniobra de algunos vehículos agrícolas y de mantenimiento hasta el punto de permitir desplazamientos laterales o "en cangrejo") por lo que es utilizado desde antiguo en vehículos industriales.

Automóviles de pasajeros[editar]

En automóviles de pasajeros hay que remontarse a 1987 para encontrar su primera aplicación en serie, cuando Honda propuso un sistema de este tipo en su Honda Prelude, forzando a otros fabricantes a considerar viable la innovación. Entre las ventajas que aporta, la mejora del comportamiento a alta velocidad parecía la más prometedora pues una dirección en ambos ejes permite un desplazamiento con una velocidad lateral de guiñada menor que en un vehículo normal. Algunos fabricantes como Mazda, Toyota o Mitsubishi propusieron sistemas opcionales de accionamiento hidráulico, mientras que Honda permaneció fiel a un sistema totalmente mecánico capaz de adaptarse a la velocidad del vehículo. El éxito no fue el esperado debido a que el comportamiento del vehículo fue considerado como "extraño" a pesar de sus cualidades.

En 1991, Honda introduce la gestión electrónica en el nuevo Honda Prelude. Esta vez el sistema (basado en el ángulo y la velocidad de giro del volante) era gestionado de un modo totalmente electrónico, consiguiéndose un tacto de conducción que sin dejar de ser eficiente, despejaba el comportamiento algo confuso de la primera generación, empleándose en generaciones posteriores del modelo Prelude hasta su desaparición en 2001.

Otros fabricantes utilizan variantes del sistema electrónico en vehículos de gama alta y algunos vehículos 4x4. En 2008 Renault desarrolló un sistema de dirección activa para el Renault Laguna III que trabajaba conjuntamente con el ESP denominado inicialmente "Active Drive" y posteriormente "4Control". El sistema permitía mediante un caculador electrónico y un servoactuador girar las ruedas traseras hasta 3,5º hasta los 60 km/h, velocidad a partir de la cual comenzaban a girar en el mismo sentido que las delanteras. El fabricante BMW introdujo su propio sistema en el BMW serie 7 de 2009 en combinación con la tracción total.

Por contra, en el mundo de la competición su uso está muy restringido y pese a considerarse extremadamente eficaz por algunos conductores de rally, no está permitido en Fórmula 1.

En la actualidad se utilizan más comúnmente sistemas de dirección pasiva basados en la inducción de ángulos de convergencia y caída en las ruedas traseras mediante la geometría de las suspensiones multibrazo.

Referencias[editar]

  1. Erasmus Darwin's Improved Design for Steering Carriages by Desmond King-Hele , 2002, The Royal Society, London. Consultado en abril de 2008.
  2. Milliken, William F, and Milliken, Douglas L: "Race Car Vehicle Dynamics", Page 715. SAE 1995 ISBN 1-56091-526-9

Enlaces externos[editar]