Cuadrado

De Wikipedia, la enciclopedia libre
(Redirigido desde «Cuadrados»)
Saltar a: navegación, búsqueda
Los cuatro tipos de paralelogramo. En el sentido de las agujas del reloj: cuadrado, rombo, romboide y rectángulo. El cuadrado y el rectángulo son paralelogramos rectángulos, mientras que los otros dos son paralelogramos no rectángulos.

En geometría, un cuadrado es un paralelogramo que tiene sus lados iguales y además sus cuatro ángulos son iguales y rectos, tiene 4 ejes de simetría, 4 vértices y 4 aristas.

Propiedades[editar]

Es el polígono que tiene sus lados opuestos paralelos y, por tanto, es un paralelogramo. Dado que sus cuatro ángulos internos son rectos, es también un caso especial de rectángulo, es un rectángulo equilátero. De modo similar, al tener los cuatro lados iguales, es un caso especial de rombo, es un rombo equiángulo. Cada ángulo interno de un cuadrado mide 90 grados ó \pi/2 radianes, y la suma de todos ellos es 360° ó 2\pi radianes. Cada ángulo externo del cuadrado mide 270° ó 3\pi/2 radianes.

Entre los rectángulos que tienen el mismo perímetro, el cuadrado es el que tiene mayor área.[1]

Un cuadrado es un rombo que tiene por lo menos un ángulo recto.

Ecuaciones y elementos[editar]

Cuadrado con círculos inscrito y circunscrito.

Si un cuadrado C tiene lados que miden L, entonces, el perímetro es igual a 4L, pues los cuatro lados son iguales.

La longitud de la diagonal se puede calcular mediante el Teorema de Pitágoras:

d = L\sqrt{2}

El área de un cuadrado es el cuadrado de la longitud del lado:

A = L^2 \,

Siendo A el área y L el lado.

Si inscribimos un círculo en un cuadrado de lado L, el radio será la mitad del lado: r = L/2. El área de dicho círculo es: π/4 ≈ 0,785 veces el área del cuadrado.

Por otro lado, si consideramos un círculo circunscrito, el radio será la mitad de la diagonal, y el área del círculo será: π/2 ≈ 1,57 veces el área del cuadrado.

Trazado con regla y compás[editar]

Trazado con regla y compás, de un cuadrado inscrito en una circunferencia de diámetro concordante con las diagonales del mismo.

Para trazar un cuadrado de diagonales d centrado en el punto O:

  1. Marque el punto O donde quiera el centro del cuadrado.
  2. Trace una línea horizontal que pase por dicho punto O.
  3. Haciendo centro en el punto O trace una circunferencia de un diámetro d cualquiera, esto genera dos puntos de intersección con la recta horizontal del paso 2.
  4. Sin variar la apertura del compás y haciendo ahora centro en alguna de las dos intersecciones del paso 3, trace un arco hasta cortar en dos puntos la circunferencia inicial.
  5. Uniendo los dos puntos hallados en el paso 4 con una línea recta (vertical), dicha recta generará un nuevo punto de intersección sobre la recta horizontal inicial.
  6. Haga centro con el compás en el punto hallado en el paso 5 y abra el mismo hasta el punto central O y trace una semicircunferencia que intercepte en dos puntos a la línea vertical del paso 5.
  7. Trace una línea recta que pase por uno de los puntos del paso 6 y por el punto central O, extendiéndola hacia ambos lados hasta intersecar a la circunferencia inicial de paso 3, esto genera sobre la misma dos puntos que son vértices opuestos del cuadrado y también extremos de una de las diagonales.
  8. Repitiendo el paso anterior pero ahora con el otro punto del paso 6 y el punto central O, se obtendrá los dos puntos que son vértices opuestos del cuadrado y también extremos de la segunda diagonal.
  9. Luego uniendo de modo cíclico con líneas rectas los cuatro puntos vértice hallados en los dos pasos anteriores, se habrá obtenido finalmente el cuadrado buscado.

Referencias[editar]

  1. Cualquier manual de Cálculo, en el capítulo de extremos; para el caso Calculus de Spivak o el manual de Nathanson

Véase también[editar]

Enlaces externos[editar]