Átomo de Rydberg

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Niveles de energía en el átomo de Litio que muestra la serie de Rydberg de los 3 valores más bajos de momento angular orbital que convergen en la primera energía de ionización.

Un átomo de Rydberg es un átomo excitado con uno o varios electrones en estados con un número cuántico principal alto.[1]​ Estos átomos tienen propiedades bastante particulares, entre las que se encuentran una respuesta exagerada a campos eléctricos y magnéticos,[2]tiempos de decaimiento largos y funciones de onda electrónicas que se aproximan (bajo ciertas condiciones) a las órbitas clásicas de los electrones alrededor del núcleo.[3]​ Estos electrones externos perciben un potencial similar al potencial eléctrico dado por un átomo de hidrógeno, pues los electrones internos apantallan a los electrones de valencia del campo eléctrico creado por el núcleo.[4]

A pesar de sus deficiencias, el modelo atómico de Bohr es útil para explicar estas propiedades. Desde el punto de vista clásico, un electrón en una órbita circular de radio r alrededor de un núcleo de hidrógeno de carga +e, obedece la segunda ley de Newton:

donde k = 1/(4πε0).

El momento orbital se encuentra cuantizado en unidades de ħ:

Combinando estas dos ecuaciones llegamos a la expresión de Bohr para el radio orbital en función del número principal cuántico, n:

Partiendo de esta ecuación uno puede comprender por qué los átomos de Rydberg muestran propiedades tan particulares: el radio orbital escala como n2 (el estado con n = 137 de hidrógeno tiene un radio orbital ~1 µm), y la sección efectiva geométrica crece como n4. Así pues, los átomos de Rydberg son extremadamente grandes y sus electrones de valencia, ligados débilmente al núcleo, son perturbados fácilmente o incluso ionizados por colisiones o campos externos.

Dado que la energía de ligadura de un electrón en un estado de Rydberg es proporcional a 1/r, y por lo tanto disminuye como 1/n2, el espaciado energético entre niveles adyacentes disminuye como 1/n3, lo que da lugar a niveles cada vez más cercanos que convergen a la primera energía de ionización. Estos estados tan cercanos forman lo que se conoce como la serie de Rydberg.

Véase también[editar]

Referencias[editar]

  1. Gallagher, Thomas F. (1994). «Rydberg Atoms». Cambridge University Press. ISBN 0-521-02166-9. 
  2. Metcalf Research Group (2004). «Rydberg Atom Optics». Stony Brook University. Archivado desde el original el 26 de agosto de 2005. Consultado el 13 de abril de 2016. 
  3. J. Murray-Krezan (2008). «The classical dynamics of Rydberg Stark atoms in momentum space». American Journal of Physics 76 (11): 1007-1011. Bibcode:2008AmJPh..76.1007M. doi:10.1119/1.2961081. 
  4. Nolan, James (31 de mayo de 2005). «Rydberg Atoms and the Quantum Defect». Davidson College. Consultado el 13 de abril de 2016.