Diferencia entre revisiones de «Cambio climático en el Medio Oriente y África del Norte»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Eliel Griezmann (discusión · contribs.)
Etiquetas: Edición desde móvil Edición vía web móvil Edición móvil avanzada
Eliel Griezmann (discusión · contribs.)
Sin resumen de edición
Etiquetas: Edición desde móvil Edición vía web móvil Edición móvil avanzada
Línea 19: Línea 19:


El fracaso del plan de reforma de las subvenciones iraníes durante la década de 2010 dejó a Irán como el mayor subvencionador de combustibles fósiles del mundo en 2018.<ref>{{Cite web|url=https://financialtribune.com/articles/domestic-economy/98959/iran-largest-fuel-subsidizer-in-2018|title=Iran: Largest Fuel Subsidizer in 2018|date=16 de julio de 2019|website=Financial Tribune}}</ref> Pero, a diferencia de otros países que eliminaron con éxito las subvenciones actuando gradualmente, a finales de la década el gobierno intentó reducir repentinamente las subvenciones a la gasolina, lo que provocó disturbios.<ref>{{Cite web|title=AP Explains: Iran gas price protests quickly turn violent|url=https://apnews.com/208de9a8f9e64d32b3be2d98aa95e265|date=2019-11-18|website=AP NEWS|access-date=2020-05-11}}</ref><ref>{{Cite web|title=How Reforming Fossil Fuel Subsidies Can Go Wrong: A lesson from Ecuador|url=https://www.iisd.org/blog/lesson-ecuador-fossil-fuel-subsidies|website=IISD|language=en|access-date=2020-05-11}}</ref>
El fracaso del plan de reforma de las subvenciones iraníes durante la década de 2010 dejó a Irán como el mayor subvencionador de combustibles fósiles del mundo en 2018.<ref>{{Cite web|url=https://financialtribune.com/articles/domestic-economy/98959/iran-largest-fuel-subsidizer-in-2018|title=Iran: Largest Fuel Subsidizer in 2018|date=16 de julio de 2019|website=Financial Tribune}}</ref> Pero, a diferencia de otros países que eliminaron con éxito las subvenciones actuando gradualmente, a finales de la década el gobierno intentó reducir repentinamente las subvenciones a la gasolina, lo que provocó disturbios.<ref>{{Cite web|title=AP Explains: Iran gas price protests quickly turn violent|url=https://apnews.com/208de9a8f9e64d32b3be2d98aa95e265|date=2019-11-18|website=AP NEWS|access-date=2020-05-11}}</ref><ref>{{Cite web|title=How Reforming Fossil Fuel Subsidies Can Go Wrong: A lesson from Ecuador|url=https://www.iisd.org/blog/lesson-ecuador-fossil-fuel-subsidies|website=IISD|language=en|access-date=2020-05-11}}</ref>

== Impactos en el entorno natural ==
=== Cambios de temperatura y clima ===
==== Calor extremo ====
El IPCC prevé que la temperatura media mundial aumente más de 1.5 grados a finales del siglo XXI.<ref name=":143"/> MENA ha sido identificada como un punto caliente para futuros cambios de temperatura debido a sus condiciones ambientales áridas.<ref>{{Citation|last1=Planton|first1=Serge|title=Sub-chapter 1.2.2. The climate of the Mediterranean regions in the future climate projections|date=2016|work=The Mediterranean region under climate change|pages=83–91|publisher=IRD Éditions|isbn=978-2-7099-2219-7|last2=Driouech|first2=Fatima|last3=Rhaz|first3=Khalid EL|last4=Lionello|first4=Piero|doi=10.4000/books.irdeditions.23085}}</ref> Aunque las tasas de calentamiento previstas durante los meses de invierno son bajas, se espera que la región experimente un aumento extremo de las temperaturas durante el verano.<ref name=":12">{{Cite journal|last1=Lelieveld|first1=J.|last2=Proestos|first2=Y.|last3=Hadjinicolaou|first3=P.|last4=Tanarhte|first4=M.|last5=Tyrlis|first5=E.|last6=Zittis|first6=G.|date=2016-04-23|title=Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century|journal=Climatic Change|volume=137|issue=1–2|pages=245–260|doi=10.1007/s10584-016-1665-6|bibcode=2016ClCh..137..245L|issn=0165-0009}}</ref><ref>{{Cite journal|last1=Bucchignani|first1=Edoardo|last2=Mercogliano|first2=Paola|last3=Panitz|first3=Hans-Jürgen|last4=Montesarchio|first4=Myriam|date=March 2018|title=Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions|journal=Advances in Climate Change Research|volume=9|issue=1|pages=66–80|doi=10.1016/j.accre.2018.01.004|issn=1674-9278}}</ref> Se espera que el aumento de la temperatura se amplifique aún más por la reducción de las precipitaciones y el consiguiente agotamiento de la humedad del suelo, lo que limita el enfriamiento por evaporación.<ref name=":82">{{Cite journal|last1=Lelieveld|first1=J.|last2=Hadjinicolaou|first2=P.|last3=Kostopoulou|first3=E.|last4=Giannakopoulos|first4=C.|last5=Pozzer|first5=A.|last6=Tanarhte|first6=M.|last7=Tyrlis|first7=E.|date=2013-03-24|title=Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century|journal=Regional Environmental Change|volume=14|issue=5|pages=1937–1949|doi=10.1007/s10113-013-0444-4|issn=1436-3798}}</ref> Como resultado, se espera que los extremos de calor aumenten significativamente tanto en frecuencia como en intensidad en toda la región MENA. Según estudios publicados por el Instituto Max Planck de Química, el número de días muy calurosos en la región se ha duplicado entre la década de 1970 y el momento en que se publicó el informe (2016).<ref name=":12" /> El estudio prevé además que las olas de calor se producirán durante 80 días del año en 2050 y 118 días del año en 2100.<ref name=":12" /> Combinado con el aumento de las tormentas de arena asociadas a períodos de sequía más largos, los aumentos de temperatura previstos harían inhabitables amplias zonas de la región.<ref name=":12" />

The average maximum temperature during the hottest days of the past 30 years has been 43 degrees Celsius.<ref name=":62"/> Dutch atmospheric chemist [[Johannes Lelieveld]] has projected that temperature maximum's could reach almost 50 degrees Celsius under current climate scenarios established by the IPCC.<ref name=":82" /> [[Johannes Lelieveld]] further projects that average summer temperatures are expected to increase by up to 7% across the MENA region, and up to 10% in highly urbanised areas.<ref name=":82" /> Extreme heat has been identified as a serious threat to human health, heightening an individuals' susceptibility to exhaustion, heart attack and mortality.<ref>{{Cite journal|last1=Nairn|first1=John|last2=Ostendorf|first2=Bertram|last3=Bi|first3=Peng|date=2018-11-08|title=Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index|journal=International Journal of Environmental Research and Public Health|volume=15|issue=11|pages=2494|doi=10.3390/ijerph15112494|pmid=30413049|pmc=6265727|issn=1660-4601|doi-access=free}}</ref> Climate scientist Ali Ahmadalipour has projected heat-related mortality rates within the MENA region to be up to 20 times higher than current rates by the end of the century.<ref>{{Cite journal|title=Drought and heat-stress mortality risks: Assessing the role of climate change, socioeconomic vulnerabilities, and population growth|last1=Ahmadalipour|first1=Ali|last2=Moradkhani|first2=Hamid|journal=EGU General Assembly Conference Abstracts|date=2020-03-23|page=21415|doi=10.5194/egusphere-egu2020-21415|bibcode=2020EGUGA..2221415A}}</ref>

=== Water resources ===
{{See also|Water conflict in the Middle East and North Africa}}[[File:Kuay Makuach, farmer, Lankien, South Sudan (16902070032).jpg|thumb|230x230px|A Sudanese farmer and his land. Drought and low rainfall has severely reduced the farmer's capacity to grow crops.]]The Middle East and North Africa currently faces extreme [[water scarcity]], with twelve out of the 17 most water stressed countries in the world deriving from the region.<ref>{{Cite web|title=17 Countries, Home to One-Quarter of the World's Population, Face Extremely High Water Stress|url=https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress|date=2019-08-06|website=World Resources Institute|language=en|access-date=2020-04-24}}</ref> The World Bank defines an area as being water stressed when per person water supplies fall below 1,700 cubic metres per year.<ref>{{Cite web|title=International Decade for Action 'Water for Life' 2005-2015. Focus Areas: Water scarcity|url=https://www.un.org/waterforlifedecade/scarcity.shtml|website=www.un.org|language=EN|access-date=2020-04-24}}</ref> The water supply across the MENA region is averaged at 1274 cubic metres per capita, with some countries having access to only 50 cubic metres per person.<ref name=":324"/> The agricultural sector within the MENA region is heavily dependent on irrigation systems due to its arid climate, with 85% of fresh water resources being utilised for agricultural purposes.<ref>{{Cite journal|last=Joffé|first=George|date=2016-07-02|title=The Impending Water Crisis in the MENA Region|journal=The International Spectator|volume=51|issue=3|pages=55–66|doi=10.1080/03932729.2016.1198069|s2cid=157997328|issn=0393-2729}}</ref><ref name=":222">{{Cite journal|last1=Sowers|first1=Jeannie|last2=Vengosh|first2=Avner|last3=Weinthal|first3=Erika|date=2010-04-23|title=Climate change, water resources, and the politics of adaptation in the Middle East and North Africa|journal=Climatic Change|volume=104|issue=3–4|pages=599–627|doi=10.1007/s10584-010-9835-4|issn=0165-0009|hdl=10161/6460|s2cid=37329318|hdl-access=free}}</ref> The IPCC indicate that the global distribution of rainfall is currently shifting in response to increasing greenhouse gas emissions, with increases in high latitude and mid-latitude wet region and decreases in equatorial dry regions such as the MENA.<ref name=":143"/> These shifting precipitation patterns have already placed significant strain on MENA agriculture, with the frequency and severity of droughts rising significantly in the past decade.<ref>{{Cite book|last=Hazell, P. B. R.|title=Managing droughts in the low-rainfall areas of the Middle East and North Africa|date=2001|publisher=International Food Policy Research Institute|oclc=48709976}}</ref>

A recent NASA study suggests that the 1998-2012 drought in the Middle East was the worst to occur in the past 900 years.<ref>{{Cite journal|last1=Cook|first1=Benjamin I.|last2=Anchukaitis|first2=Kevin J.|last3=Touchan|first3=Ramzi|last4=Meko|first4=David M.|last5=Cook|first5=Edward R.|date=2016-03-04|title=Spatiotemporal drought variability in the Mediterranean over the last 900 years|journal=Journal of Geophysical Research: Atmospheres|volume=121|issue=5|pages=2060–2074|doi=10.1002/2015jd023929|pmid=29780676|pmc=5956227|bibcode=2016JGRD..121.2060C|issn=2169-897X|doi-access=free}}</ref> Climate scientist Colin Kelley suggests that climate change was a significant contributor to the increased severity of the most recent drought in the region. He claims that such drought is 3 times more likely to occur due to human influence on climate and the drought have contributed to the beginning of the [[Syrian civil war]].<ref name=":23">{{Cite journal|last1=Kelley|first1=Colin P.|last2=Mohtadi|first2=Shahrzad|last3=Cane|first3=Mark A.|last4=Seager|first4=Richard|last5=Kushnir|first5=Yochanan|date=2015-03-02|title=Climate change in the Fertile Crescent and implications of the recent Syrian drought|journal=Proceedings of the National Academy of Sciences|volume=112|issue=11|pages=3241–3246|doi=10.1073/pnas.1421533112|pmid=25733898|pmc=4371967|bibcode=2015PNAS..112.3241K|issn=0027-8424|doi-access=free}}</ref> Along with environmental impacts, increasing drought periods affect agricultural incomes, diminishes public health and weakens political stability in the MENA region.<ref>{{Cite journal|last=Haddadin|first=Munther J.|date=2001|title=Water Scarcity Impacts and Potential Conflicts in the MENA Region|journal=Water International|volume=26|issue=4|pages=460–470|doi=10.1080/02508060108686947|s2cid=154814291|issn=0250-8060}}</ref> Syria experienced its most severe drought on record from 2007 to 2010, where restricted water supply degraded agricultural resources and increased economic pressures.<ref name=":23" /><ref name=":032">{{Cite journal|last=Gleick|first=Peter H.|date=2014|title=Water, Drought, Climate Change, and Conflict in Syria|journal=Weather, Climate, and Society|volume=6|issue=3|pages=331–340|doi=10.1175/wcas-d-13-00059.1|issn=1948-8327}}</ref> American environmental scientist [[Peter Gleick]] also asserts that heightened social vulnerability and conflict over scare water supplies during this period catalysed the onset of the Syrian war.<ref name=":032" />

However, in 2017 a study lead by sociologist and political ecologist Jan Selby has discredited these claims, reporting that there is no solid evidence that climate change is associated with the drought, the same about the impact of the drought on the conflict in Syria.<ref>{{Cite journal|last1=Selby|first1=Jan|last2=Dahi|first2=Omar S.|last3=Fröhlich|first3=Christiane|last4=Hulme|first4=Mike|date=2017-09-01|title=Climate change and the Syrian civil war revisited|url=http://www.sciencedirect.com/science/article/pii/S0962629816301822|journal=Political Geography|language=en|volume=60|pages=232–244|doi=10.1016/j.polgeo.2017.05.007|issn=0962-6298|doi-access=free}}</ref> In 2019 Konstantin Ash
and Nick Obradovich published research indicating that extreme drought was one of the leading factors in the creation of the Syrian war.<ref>{{cite journal |last1=Ash |first1=Konstantin Ash |last2=Obradovich |first2=Nick |title=Climatic Stress, Internal Migration, and Syrian Civil War Onset |journal=Journal of Conflict Resolution |date=25 July 2019 |volume=64 |issue=1 |pages=3–31 |doi=10.1177/0022002719864140 |s2cid=219975610 }}</ref>

Increasing water insecurity as a result of climate change is set to exacerbate existing [[Food insecurity|food insecurities]] in the countries affected.<ref name=":2me2">{{cite journal|last1=Devereux|first1=Stephen|date=December 2015|title=Social Protection and Safety Nets in the Middle East and North Africa|url=https://documents.wfp.org/stellent/groups/public/documents/communications/wfp287222.pdf?_ga=2.103932103.69070675.1589488294-1332790439.1589488294|journal=Institute of Development Studies|volume=2015|issue=80|access-date=15 May 2020}}</ref> A study published by the [[World Food Programme|World Food Porgramme]] has predicted a decline in crop yields by 30% in 2050 as a result of increasing droughts.<ref name=":2me2" /> North African countries are highly vulnerable to reduced precipitation as 88% of the regions crops possess no irrigation, relying on consistent rainfall.<ref>{{Cite journal|last1=Mougou|first1=Raoudha|last2=Mansour|first2=Mohsen|last3=Iglesias|first3=Ana|last4=Chebbi|first4=Rim Zitouna|last5=Battaglini|first5=Antonella|date=2010-11-17|title=Climate change and agricultural vulnerability: a case study of rain-fed wheat in Kairouan, Central Tunisia|journal=Regional Environmental Change|volume=11|issue=S1|pages=137–142|doi=10.1007/s10113-010-0179-4|s2cid=153595504|issn=1436-3798|url=http://oa.upm.es/7137/}}</ref> The consequences of these reduced harvests strongly impact rural regions and communities that rely heavily on agriculture as a source of income.<ref>{{cite journal|last1=Verner|first1=Dorte|date=2012|title=Adaptation to a changing climate in the Arab countries : a case for adaptation governance and leadership in building climate resilience|url=http://documents.worldbank.org/curated/en/740351468299700935/pdf/Adaptation-to-a-changing-climate-in-the-Arab-countries-a-case-for-adaptation-governance-and-leadership-in-building-climate-resilience.pdf|journal=Mean Development Report|volume=1|issue=1|access-date=15 May 2020}}</ref>

=== Sea level rise ===
[[File:Alexandria_coast_(2715600220).jpg|alt=|thumb|260x260px|The coastline of Alexandria, Egypt's 2nd largest city.]]

[[Alexandria]] is one of the most vulnerable cities to sea level rise.<ref name="Weforum2" />

Across the MENA region, 60 million people inhabited coastal areas in 2010, a population that has been predicted by the World Bank to grow to 100 million by 2030.<ref name=":324"/><ref>World Bank. 2011. ''Climate change adaptation and natural disasters preparedness in the coastal cities of North Africa : phase 2 : adaptation and resilience action plan –alexandria area (English)''. Washington, D.C. : World Bank Group. <nowiki>http://documents.worldbank.org/curated/en/605381501489019613/phase-2-adaptation-and-resilience-action-plan-alexandria-area</nowiki></ref> As a result, the population of the MENA region is expected to be significantly impacted by sea level rise occurring due to climate change.<ref name=":0323">{{Cite journal|last1=Dasgupta|first1=Susmita|last2=Laplante|first2=Benoit|last3=Meisner|first3=Craig|last4=Wheeler|first4=David|last5=Yan|first5=Jianping|date=2008-10-10|title=The impact of sea level rise on developing countries: a comparative analysis|journal=Climatic Change|volume=93|issue=3–4|pages=379–388|doi=10.1007/s10584-008-9499-5|issn=0165-0009|hdl=10986/7174|s2cid=154578495|hdl-access=free}}</ref> One consequence of rising sea levels is the loss of [[coastal wetland]]s, a natural resource responsible for [[ecosystem services]] such as storm buffering, water quality maintenance and carbon sequestration.<ref name=":123">{{Cite journal|last1=Blankespoor|first1=Brian|last2=Dasgupta|first2=Susmita|last3=Laplante|first3=Benoit|date=2014-12-01|title=Sea-Level Rise and Coastal Wetlands|journal=AMBIO|language=en|volume=43|issue=8|pages=996–1005|doi=10.1007/s13280-014-0500-4|pmid=24659473|issn=1654-7209|pmc=4235901}}</ref> A study conducted by the World Bank predicts that the MENA region would lose over 90% of its coastal and freshwater wetlands if a one-metre sea level rise were to occur.<ref name=":123" />

In North Africa, Egypt is expected to be most affected by changes in sea level.<ref name=":0323" /> A third of the [[Nile Delta]] and large parts of [[Alexandria]], Egypt's second largest city, lie below the mean global sea level.<ref name=":3">{{Citation|last1=Baumert|first1=Niklas|title=Anticipating Emerging Risks and Vulnerabilities from Sea Level Rise Induced Preventive Resettlement in Greater Alexandria, Egypt|date=2017|work=Environmental Change and Human Security in Africa and the Middle East|pages=133–157|publisher=Springer International Publishing|isbn=978-3-319-45646-1|last2=Kloos|first2=Julia|doi=10.1007/978-3-319-45648-5_8}}</ref> These areas have been drained for agricultural purposes and undergone urban development, where inundation and flooding is prevented by [[Seawall|sea walls]] and [[dam]]s.<ref name=":3" /> However, failures occurring in these structures, [[storm surge]]s and extreme weather events could lead to the inundation of these areas in the future if sea levels continue to rise.<ref name=":3" /> Agricultural areas in Egypt are particularly at risk, where a one-metre rise in sea level would submerge 12-15% of the nations total agricultural land.<ref name=":42">{{Citation|last1=Sivakumar|first1=Mannava V. K.|title=Climate Change in the West Asia and North Africa Region|date=2013|work=Climate Change and Food Security in West Asia and North Africa|pages=3–26|publisher=Springer Netherlands|isbn=978-94-007-6750-8|last2=Ruane|first2=Alex C.|last3=Camacho|first3=Jose|doi=10.1007/978-94-007-6751-5_1}}</ref> This is estimated to displace 6.7 million people in Egypt and affect millions more who rely on agriculture for income.<ref name=":42" /> A more moderate 50&nbsp;cm increase in sea level has been projected to displace 2 million people and generate US$35 billion of damages.<ref>{{Cite journal|last=El-Raey|first=M.|date=1997|title=Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise|journal=Ocean & Coastal Management|volume=37|issue=1|pages=29–40|doi=10.1016/s0964-5691(97)00056-2|issn=0964-5691}}</ref>


== Referencias ==
== Referencias ==

Revisión del 20:10 24 abr 2021

Mapa del Medio Oriente de la clasificación climática de Köppen
Mapa de África de la clasificación climática de Köppen

El cambio climático en el Medio Oriente y África del Norte (MENA) se refiere a los cambios en el clima de la región MENA y las subsiguientes estrategias de respuesta, adaptación y mitigación de los países de la región. En 2018, la región MENA emitió 3200 millones de toneladas de dióxido de carbono y produjo el 8.7% de las emisiones de gases de efecto invernadero (GEI)[1]​ a pesar de representar solo el 6% de la población mundial.[2]​ Estas emisiones provienen principalmente del sector energético,[3]​ un componente integral de muchas economías del Medio Oriente y África del Norte debido a las extensas reservas de petróleo y gas natural que se encuentran dentro de la región.[4][5]

Reconocido por las Naciones Unidas, el Banco Mundial y la Organización Mundial de la Salud como uno de los mayores retos globales del siglo XXI, el cambio climático está teniendo un efecto sin precedentes en los sistemas naturales de la Tierra.[6][7][8]​ Los cambios bruscos de la temperatura global y del nivel del mar, los cambios en los patrones de precipitación y el aumento de la frecuencia de los fenómenos meteorológicos extremos son algunos de los principales impactos del cambio climático identificados por el Grupo Intergubernamental de Expertos sobre el Cambio Climático (GIECC).[9]​ La región del Medio Oriente y Norte de África es especialmente vulnerable a estos impactos debido a su entorno árido y semiárido, que se enfrenta a problemas climáticos como la escasez de precipitaciones, las altas temperaturas y la sequedad del suelo.[9][10]​ El GIECC prevé que las condiciones climáticas que propician estos retos para MENA empeoren a lo largo del siglo XXI.[9]​ Si no se reducen significativamente las emisiones de gases de efecto invernadero, parte de la región de MENA corre el riesgo de volverse inhabitable antes del año 2100.[11][12][13]

Se espera que el cambio climático ejerza una presión significativa sobre los ya escasos recursos hídricos y agrícolas de la región MENA, amenazando la seguridad nacional y la estabilidad política de todos los países incluidos.[14]​ Esto ha llevado a algunos países del Medio Oriente y África del Norte a comprometerse con la cuestión del cambio climático a nivel internacional a través de acuerdos medioambientales como el Acuerdo de París. También se están estableciendo políticas a nivel nacional entre los países de MENA, centrándose en el desarrollo de las energías renovables.[15]

Emisiones de gases de efecto invernadero

Emisión de gases de efecto invernadero por una chimenea en un campo de gas natural y petróleo en el oeste de Irán.

A partir de enero de 2021, el sitio web de Unicef agrupa el siguiente conjunto de 20 países como pertenecientes a la región del Medio Oriente y África del Norte: "Arabia Saudita, Argelia, Bahréin, Yibuti, Egipto, Irán (República Islámica de), Irak, Jordania, Kuwait, Líbano, Libia, Marruecos, Omán, Qatar, Estado de Palestina, Sudán, República Árabe Siria, Túnez, Emiratos Árabes Unidos y Yemen".[16]​ Otros incluyen también a Israel.[17]

Las emisiones de gases de efecto invernadero producidas por el ser humano han sido identificadas por el GIACC y la gran mayoría de los científicos del clima como el principal motor del cambio climático.[18][9]​ En las últimas tres décadas, la región del Medio Oriente y África del Norte ha triplicado con creces sus emisiones de gases de efecto invernadero y actualmente emite por encima de la media mundial por persona, y la mayoría de los diez primeros países por emisiones de dióxido de carbono por persona se encuentran en el Medio Oriente.[19][1]​ Estos elevados niveles de emisiones pueden atribuirse principalmente a Arabia Saudita e Irán, que son el 9º y 7º mayores emisores de CO2 del mundo, y que representan el 40% de las emisiones de la región en 2018.[1]​ Los países de Oriente Medio y Norte de África dependen en gran medida de los combustibles fósiles para la generación de electricidad, obteniendo el 97% de su energía del petróleo, el gas natural y el carbón (en Turquía).[20]​ La extracción, producción y exportación de combustibles fósiles es también un componente importante de muchas economías de la región MENA, que posee el 60% de las reservas mundiales de petróleo y el 45% de las reservas conocidas de gas natural.[21]​ La reducción de la quema de gas ayudaría.[22]

El fracaso del plan de reforma de las subvenciones iraníes durante la década de 2010 dejó a Irán como el mayor subvencionador de combustibles fósiles del mundo en 2018.[23]​ Pero, a diferencia de otros países que eliminaron con éxito las subvenciones actuando gradualmente, a finales de la década el gobierno intentó reducir repentinamente las subvenciones a la gasolina, lo que provocó disturbios.[24][25]

Impactos en el entorno natural

Cambios de temperatura y clima

Calor extremo

El IPCC prevé que la temperatura media mundial aumente más de 1.5 grados a finales del siglo XXI.[9]​ MENA ha sido identificada como un punto caliente para futuros cambios de temperatura debido a sus condiciones ambientales áridas.[26]​ Aunque las tasas de calentamiento previstas durante los meses de invierno son bajas, se espera que la región experimente un aumento extremo de las temperaturas durante el verano.[27][28]​ Se espera que el aumento de la temperatura se amplifique aún más por la reducción de las precipitaciones y el consiguiente agotamiento de la humedad del suelo, lo que limita el enfriamiento por evaporación.[29]​ Como resultado, se espera que los extremos de calor aumenten significativamente tanto en frecuencia como en intensidad en toda la región MENA. Según estudios publicados por el Instituto Max Planck de Química, el número de días muy calurosos en la región se ha duplicado entre la década de 1970 y el momento en que se publicó el informe (2016).[27]​ El estudio prevé además que las olas de calor se producirán durante 80 días del año en 2050 y 118 días del año en 2100.[27]​ Combinado con el aumento de las tormentas de arena asociadas a períodos de sequía más largos, los aumentos de temperatura previstos harían inhabitables amplias zonas de la región.[27]

The average maximum temperature during the hottest days of the past 30 years has been 43 degrees Celsius.[10]​ Dutch atmospheric chemist Johannes Lelieveld has projected that temperature maximum's could reach almost 50 degrees Celsius under current climate scenarios established by the IPCC.[29]Johannes Lelieveld further projects that average summer temperatures are expected to increase by up to 7% across the MENA region, and up to 10% in highly urbanised areas.[29]​ Extreme heat has been identified as a serious threat to human health, heightening an individuals' susceptibility to exhaustion, heart attack and mortality.[30]​ Climate scientist Ali Ahmadalipour has projected heat-related mortality rates within the MENA region to be up to 20 times higher than current rates by the end of the century.[31]

Water resources

A Sudanese farmer and his land. Drought and low rainfall has severely reduced the farmer's capacity to grow crops.

The Middle East and North Africa currently faces extreme water scarcity, with twelve out of the 17 most water stressed countries in the world deriving from the region.[32]​ The World Bank defines an area as being water stressed when per person water supplies fall below 1,700 cubic metres per year.[33]​ The water supply across the MENA region is averaged at 1274 cubic metres per capita, with some countries having access to only 50 cubic metres per person.[14]​ The agricultural sector within the MENA region is heavily dependent on irrigation systems due to its arid climate, with 85% of fresh water resources being utilised for agricultural purposes.[34][35]​ The IPCC indicate that the global distribution of rainfall is currently shifting in response to increasing greenhouse gas emissions, with increases in high latitude and mid-latitude wet region and decreases in equatorial dry regions such as the MENA.[9]​ These shifting precipitation patterns have already placed significant strain on MENA agriculture, with the frequency and severity of droughts rising significantly in the past decade.[36]

A recent NASA study suggests that the 1998-2012 drought in the Middle East was the worst to occur in the past 900 years.[37]​ Climate scientist Colin Kelley suggests that climate change was a significant contributor to the increased severity of the most recent drought in the region. He claims that such drought is 3 times more likely to occur due to human influence on climate and the drought have contributed to the beginning of the Syrian civil war.[38]​ Along with environmental impacts, increasing drought periods affect agricultural incomes, diminishes public health and weakens political stability in the MENA region.[39]​ Syria experienced its most severe drought on record from 2007 to 2010, where restricted water supply degraded agricultural resources and increased economic pressures.[38][40]​ American environmental scientist Peter Gleick also asserts that heightened social vulnerability and conflict over scare water supplies during this period catalysed the onset of the Syrian war.[40]

However, in 2017 a study lead by sociologist and political ecologist Jan Selby has discredited these claims, reporting that there is no solid evidence that climate change is associated with the drought, the same about the impact of the drought on the conflict in Syria.[41]​ In 2019 Konstantin Ash and Nick Obradovich published research indicating that extreme drought was one of the leading factors in the creation of the Syrian war.[42]

Increasing water insecurity as a result of climate change is set to exacerbate existing food insecurities in the countries affected.[43]​ A study published by the World Food Porgramme has predicted a decline in crop yields by 30% in 2050 as a result of increasing droughts.[43]​ North African countries are highly vulnerable to reduced precipitation as 88% of the regions crops possess no irrigation, relying on consistent rainfall.[44]​ The consequences of these reduced harvests strongly impact rural regions and communities that rely heavily on agriculture as a source of income.[45]

Sea level rise

The coastline of Alexandria, Egypt's 2nd largest city.

Alexandria is one of the most vulnerable cities to sea level rise.[11]

Across the MENA region, 60 million people inhabited coastal areas in 2010, a population that has been predicted by the World Bank to grow to 100 million by 2030.[14][46]​ As a result, the population of the MENA region is expected to be significantly impacted by sea level rise occurring due to climate change.[47]​ One consequence of rising sea levels is the loss of coastal wetlands, a natural resource responsible for ecosystem services such as storm buffering, water quality maintenance and carbon sequestration.[48]​ A study conducted by the World Bank predicts that the MENA region would lose over 90% of its coastal and freshwater wetlands if a one-metre sea level rise were to occur.[48]

In North Africa, Egypt is expected to be most affected by changes in sea level.[47]​ A third of the Nile Delta and large parts of Alexandria, Egypt's second largest city, lie below the mean global sea level.[49]​ These areas have been drained for agricultural purposes and undergone urban development, where inundation and flooding is prevented by sea walls and dams.[49]​ However, failures occurring in these structures, storm surges and extreme weather events could lead to the inundation of these areas in the future if sea levels continue to rise.[49]​ Agricultural areas in Egypt are particularly at risk, where a one-metre rise in sea level would submerge 12-15% of the nations total agricultural land.[50]​ This is estimated to displace 6.7 million people in Egypt and affect millions more who rely on agriculture for income.[50]​ A more moderate 50 cm increase in sea level has been projected to displace 2 million people and generate US$35 billion of damages.[51]

Referencias

  1. a b c «CO2 Emissions | Global Carbon Atlas». www.globalcarbonatlas.org. Consultado el 10 de abril de 2020. 
  2. «Population, total - Middle East & North Africa, World | Data». data.worldbank.org. Consultado el 11 de abril de 2020. 
  3. Abbass, Rana Alaa; Kumar, Prashant; El-Gendy, Ahmed (Febrero de 2018). «An overview of monitoring and reduction strategies for health and climate change related emissions in the Middle East and North Africa region». Atmospheric Environment 175: 33-43. Bibcode:2018AtmEn.175...33A. ISSN 1352-2310. doi:10.1016/j.atmosenv.2017.11.061. 
  4. Al-mulali, Usama (1 de octubre de 2011). «Oil consumption, CO2 emission and economic growth in MENA countries». Energy (en inglés) 36 (10): 6165-6171. ISSN 0360-5442. doi:10.1016/j.energy.2011.07.048. 
  5. Tagliapietra, Simone (1 de noviembre de 2019). «The impact of the global energy transition on MENA oil and gas producers». Energy Strategy Reviews (en inglés) 26: 100397. ISSN 2211-467X. doi:10.1016/j.esr.2019.100397. 
  6. Bhargava, Viy K., ed. (28 de agosto de 2006). Global Issues for Global Citizens. The World Bank. ISBN 978-0-8213-6731-5. doi:10.1596/978-0-8213-6731-5. 
  7. «Ten health issues WHO will tackle this year». www.who.int (en inglés). Consultado el 12 de abril de 2020. 
  8. Nations, United. «The Greatest Threat To Global Security: Climate Change Is Not Merely An Environmental Problem». United Nations (en inglés). Consultado el 12 de abril de 2020. 
  9. a b c d e f IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  10. a b El-Fadel, M.; Bou-Zeid, E. (2003). «Climate change and water resources in the Middle East: vulnerability, socio-economic impacts and adaptation». Climate Change in the Mediterranean. ISBN 9781781950258. doi:10.4337/9781781950258.00015. 
  11. a b Broom, Douglas. «How the Middle East is suffering on the front lines of climate change». World Economic Forum. Consultado el 4 de febrero de 2020. 
  12. Gornall, Jonathan (24 de abril de 2019). «With climate change, life in the Gulf could become impossible». Euroactive. Consultado el 4 de febrero de 2020. 
  13. Pal, Jeremy S.; Eltahir, Elfatih A. B. (26 de octubre de 2015). «Future temperature in southwest Asia projected to exceed a threshold for human adaptability». Nature Climate Change 6 (2): 197-200. ISSN 1758-678X. doi:10.1038/nclimate2833. 
  14. a b c Waha, Katharina; Krummenauer, Linda; Adams, Sophie; Aich, Valentin; Baarsch, Florent; Coumou, Dim; Fader, Marianela; Hoff, Holger; Jobbins, Guy; Marcus, Rachel; Mengel, Matthias (12 de abril de 2017). «Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups». Regional Environmental Change 17 (6): 1623-1638. ISSN 1436-3798. S2CID 134523218. doi:10.1007/s10113-017-1144-2. 
  15. Brauch, Hans Günter (2012), «Policy Responses to Climate Change in the Mediterranean and MENA Region during the Anthropocene», Climate Change, Human Security and Violent Conflict, Hexagon Series on Human and Environmental Security and Peace 8, Springer Berlin Heidelberg, pp. 719-794, ISBN 978-3-642-28625-4, doi:10.1007/978-3-642-28626-1_37 .
  16. «Middle East and North Africa». unicef.org. UNICEF. Consultado el 16 de enero de 2021. 
  17. Nuno Santos & Iride Ceccacci (2015). «Egypt, Jordan, Morocco and Tunisia: Key trends in the agrifood sector». fao.org. FAO. Consultado el 16 de enero de 2021. 
  18. Cook, John; Oreskes, Naomi; Doran, Peter T; Anderegg, William R L; Verheggen, Bart; Maibach, Ed W; Carlton, J Stuart; Lewandowsky, Stephan; Skuce, Andrew G; Green, Sarah A; Nuccitelli, Dana (1 de abril de 2016). «Consensus on consensus: a synthesis of consensus estimates on human-caused global warming». Environmental Research Letters 11 (4): 048002. Bibcode:2016ERL....11d8002C. ISSN 1748-9326. doi:10.1088/1748-9326/11/4/048002. 
  19. «Fossil CO2 and GHG emissions of all world countries : 2019 report.». op.europa.eu. 26 de septiembre de 2019. Consultado el 20 de mayo de 2020. 
  20. menara. «The MENA Region in the Global Energy Markets». Menara Project (en inglés estadounidense). Consultado el 24 de abril de 2020. 
  21. Bridle, Richard, L. Kitson, and Petre Wooders. "Fossil-fuel subsidies: A barrier to renewable energy in five Middle East and North African countries." GSI Report (2014): 8-9.
  22. «Energy supply transformation pathways in Iran to reduce GHG emissions in line with the Paris Agreement». Energy Strategy Reviews (en inglés) 32: 100541. 1 de noviembre de 2020. ISSN 2211-467X. doi:10.1016/j.esr.2020.100541. 
  23. «Iran: Largest Fuel Subsidizer in 2018». Financial Tribune. 16 de julio de 2019. 
  24. «AP Explains: Iran gas price protests quickly turn violent». AP NEWS. 18 de noviembre de 2019. Consultado el 11 de mayo de 2020. 
  25. «How Reforming Fossil Fuel Subsidies Can Go Wrong: A lesson from Ecuador». IISD (en inglés). Consultado el 11 de mayo de 2020. 
  26. Planton, Serge; Driouech, Fatima; Rhaz, Khalid EL; Lionello, Piero (2016), «Sub-chapter 1.2.2. The climate of the Mediterranean regions in the future climate projections», The Mediterranean region under climate change (IRD Éditions): 83-91, ISBN 978-2-7099-2219-7, doi:10.4000/books.irdeditions.23085 .
  27. a b c d Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. (23 de abril de 2016). «Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century». Climatic Change 137 (1–2): 245-260. Bibcode:2016ClCh..137..245L. ISSN 0165-0009. doi:10.1007/s10584-016-1665-6. 
  28. Bucchignani, Edoardo; Mercogliano, Paola; Panitz, Hans-Jürgen; Montesarchio, Myriam (March 2018). «Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions». Advances in Climate Change Research 9 (1): 66-80. ISSN 1674-9278. doi:10.1016/j.accre.2018.01.004. 
  29. a b c Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Giannakopoulos, C.; Pozzer, A.; Tanarhte, M.; Tyrlis, E. (24 de marzo de 2013). «Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century». Regional Environmental Change 14 (5): 1937-1949. ISSN 1436-3798. doi:10.1007/s10113-013-0444-4. 
  30. Nairn, John; Ostendorf, Bertram; Bi, Peng (8 de noviembre de 2018). «Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index». International Journal of Environmental Research and Public Health 15 (11): 2494. ISSN 1660-4601. PMC 6265727. PMID 30413049. doi:10.3390/ijerph15112494.  Parámetro desconocido |doi-access= ignorado (ayuda)
  31. Ahmadalipour, Ali; Moradkhani, Hamid (23 de marzo de 2020). «Drought and heat-stress mortality risks: Assessing the role of climate change, socioeconomic vulnerabilities, and population growth». EGU General Assembly Conference Abstracts: 21415. Bibcode:2020EGUGA..2221415A. doi:10.5194/egusphere-egu2020-21415. 
  32. «17 Countries, Home to One-Quarter of the World's Population, Face Extremely High Water Stress». World Resources Institute (en inglés). 6 de agosto de 2019. Consultado el 24 de abril de 2020. 
  33. «International Decade for Action 'Water for Life' 2005-2015. Focus Areas: Water scarcity». www.un.org (en inglés). Consultado el 24 de abril de 2020. 
  34. Joffé, George (2 de julio de 2016). «The Impending Water Crisis in the MENA Region». The International Spectator 51 (3): 55-66. ISSN 0393-2729. S2CID 157997328. doi:10.1080/03932729.2016.1198069. 
  35. Sowers, Jeannie; Vengosh, Avner; Weinthal, Erika (23 de abril de 2010). «Climate change, water resources, and the politics of adaptation in the Middle East and North Africa». Climatic Change 104 (3–4): 599-627. ISSN 0165-0009. S2CID 37329318. doi:10.1007/s10584-010-9835-4. hdl:10161/6460. 
  36. Hazell, P. B. R. (2001). Managing droughts in the low-rainfall areas of the Middle East and North Africa. International Food Policy Research Institute. OCLC 48709976. 
  37. Cook, Benjamin I.; Anchukaitis, Kevin J.; Touchan, Ramzi; Meko, David M.; Cook, Edward R. (4 de marzo de 2016). «Spatiotemporal drought variability in the Mediterranean over the last 900 years». Journal of Geophysical Research: Atmospheres 121 (5): 2060-2074. Bibcode:2016JGRD..121.2060C. ISSN 2169-897X. PMC 5956227. PMID 29780676. doi:10.1002/2015jd023929.  Parámetro desconocido |doi-access= ignorado (ayuda)
  38. a b Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; Seager, Richard; Kushnir, Yochanan (2 de marzo de 2015). «Climate change in the Fertile Crescent and implications of the recent Syrian drought». Proceedings of the National Academy of Sciences 112 (11): 3241-3246. Bibcode:2015PNAS..112.3241K. ISSN 0027-8424. PMC 4371967. PMID 25733898. doi:10.1073/pnas.1421533112.  Parámetro desconocido |doi-access= ignorado (ayuda)
  39. Haddadin, Munther J. (2001). «Water Scarcity Impacts and Potential Conflicts in the MENA Region». Water International 26 (4): 460-470. ISSN 0250-8060. S2CID 154814291. doi:10.1080/02508060108686947. 
  40. a b Gleick, Peter H. (2014). «Water, Drought, Climate Change, and Conflict in Syria». Weather, Climate, and Society 6 (3): 331-340. ISSN 1948-8327. doi:10.1175/wcas-d-13-00059.1. 
  41. Selby, Jan; Dahi, Omar S.; Fröhlich, Christiane; Hulme, Mike (1 de septiembre de 2017). «Climate change and the Syrian civil war revisited». Political Geography (en inglés) 60: 232-244. ISSN 0962-6298. doi:10.1016/j.polgeo.2017.05.007.  Parámetro desconocido |doi-access= ignorado (ayuda)
  42. Ash, Konstantin Ash; Obradovich, Nick (25 July 2019). «Climatic Stress, Internal Migration, and Syrian Civil War Onset». Journal of Conflict Resolution 64 (1): 3-31. S2CID 219975610. doi:10.1177/0022002719864140. 
  43. a b Devereux, Stephen (December 2015). «Social Protection and Safety Nets in the Middle East and North Africa». Institute of Development Studies 2015 (80). Consultado el 15 de mayo de 2020. 
  44. Mougou, Raoudha; Mansour, Mohsen; Iglesias, Ana; Chebbi, Rim Zitouna; Battaglini, Antonella (17 de noviembre de 2010). «Climate change and agricultural vulnerability: a case study of rain-fed wheat in Kairouan, Central Tunisia». Regional Environmental Change 11 (S1): 137-142. ISSN 1436-3798. S2CID 153595504. doi:10.1007/s10113-010-0179-4. 
  45. Verner, Dorte (2012). «Adaptation to a changing climate in the Arab countries : a case for adaptation governance and leadership in building climate resilience». Mean Development Report 1 (1). Consultado el 15 de mayo de 2020. 
  46. World Bank. 2011. Climate change adaptation and natural disasters preparedness in the coastal cities of North Africa : phase 2 : adaptation and resilience action plan –alexandria area (English). Washington, D.C. : World Bank Group. http://documents.worldbank.org/curated/en/605381501489019613/phase-2-adaptation-and-resilience-action-plan-alexandria-area
  47. a b Dasgupta, Susmita; Laplante, Benoit; Meisner, Craig; Wheeler, David; Yan, Jianping (10 de octubre de 2008). «The impact of sea level rise on developing countries: a comparative analysis». Climatic Change 93 (3–4): 379-388. ISSN 0165-0009. S2CID 154578495. doi:10.1007/s10584-008-9499-5. hdl:10986/7174. 
  48. a b Blankespoor, Brian; Dasgupta, Susmita; Laplante, Benoit (1 de diciembre de 2014). «Sea-Level Rise and Coastal Wetlands». AMBIO (en inglés) 43 (8): 996-1005. ISSN 1654-7209. PMC 4235901. PMID 24659473. doi:10.1007/s13280-014-0500-4. 
  49. a b c Baumert, Niklas; Kloos, Julia (2017), «Anticipating Emerging Risks and Vulnerabilities from Sea Level Rise Induced Preventive Resettlement in Greater Alexandria, Egypt», Environmental Change and Human Security in Africa and the Middle East (Springer International Publishing): 133-157, ISBN 978-3-319-45646-1, doi:10.1007/978-3-319-45648-5_8 .
  50. a b Sivakumar, Mannava V. K.; Ruane, Alex C.; Camacho, Jose (2013), «Climate Change in the West Asia and North Africa Region», Climate Change and Food Security in West Asia and North Africa (Springer Netherlands): 3-26, ISBN 978-94-007-6750-8, doi:10.1007/978-94-007-6751-5_1 .
  51. El-Raey, M. (1997). «Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise». Ocean & Coastal Management 37 (1): 29-40. ISSN 0964-5691. doi:10.1016/s0964-5691(97)00056-2. 

Enlaces externos