Ir al contenido

Diferencia entre revisiones de «Función aditiva»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 186.28.16.146 a la última edición de Super braulio
Línea 13: Línea 13:


Toda función completamente aditiva es aditiva, pero no viceversa.
Toda función completamente aditiva es aditiva, pero no viceversa.

pork buscar esta bobad si puedes estar en facebooko en msn
no sea estupid


== Funciones multiplicativas ==
== Funciones multiplicativas ==

Revisión del 22:24 5 may 2010

Tradicionalmente en matemática, una función aditiva es una función que preserva la operación suma:

f(x + y) = f(x) + f(y)

para cualesquiera dos elementos x e y en el dominio. Así por ejemplo, cualquier transformación lineal es aditiva. Cuando el dominio son los números reales, esta función corresponde a la ecuación funcional de Cauchy.

En teoría de números, una función aditiva es un una función aritmética f(n) que va desde los enteros positivos n tales que cada vez que a y b son coprimos, la función del producto es la suma de las funciones.

f(ab) = f(a) + f(b).

Note que cualquier homomorfismo f entre grupos abelianos es "aditivo" según la primera definición. El resto de este artículo se refiere a las funciones aditivas usando esta segunda definición de la teoría de números.

Función completamente aditiva

Una función aditiva f(n) es completamente aditiva o totalmente aditiva si f(ab) = f(a) + f(b) se cumple para todos los enteros positivos a y b, inclusive aquellos que no son coprimos.

Toda función completamente aditiva es aditiva, pero no viceversa.

Funciones multiplicativas

A partir de cualquier función aditiva f(n) es fácil crear una función multiplicativa relacionada g(n), utilizando la propiedad de que cuando a y b son coprimos se cumple lo siguiente:

g(ab) = g(a) × g(b).

Un ejemplo es la función g(n) = 2f(n) − f(1).

Bibliografía

  • Janko Bračič, Kolobar aritmetičnih funkcij (Ring of arithmetical functions), (Obzornik mat, fiz. 49 (2002) 4, pp. 97–108) (MSC (2000) 11A25)