Producto de Wallis

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En matemáticas, se conoce como Producto de Wallis una expresión utilizada para representar el valor de π que fue descubierta por John Wallis en 1655 y que establece que:


 
\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1}\cdot\frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}

Demostración[editar]

Antes que nada se debe considerar que las raíces de sin(x)/x son ±nπ, donde n = 1, 2, 3,... Entonces, podemos expresar el seno como un producto infinito de factores lineales de sus raíces:


\frac{\sin(x)}{x} = k \left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right) \cdots \qquad\ \textrm{donde}~k~\textrm{es~una~constante}

Para encontrar la constante k, se toma el límite en ambos lados:


\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \left( k \left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right) \cdots \right) = k

Sabiendo que:


\lim_{x \to 0} \frac{\sin(x)}{x} = 1

Hacemos k=1. Obtenemos la fórmula de Euler-Wallis para el seno:


\frac{\sin(x)}{x} = \left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right) \cdots

\frac{\sin(x)}{x} = \left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{4\pi^2}\right)\left(1 - \frac{x^2}{9\pi^2}\right) \cdots

Haciendo x=π/2, se obtiene:


\frac{1}{\pi / 2} = \left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{4^2}\right)\left(1 - \frac{1}{6^2}\right) \cdots = \prod_{n=1}^{\infty} (1 - \frac{1}{4n^2})

\frac{\pi}{2} = \prod_{n=1}^{\infty} (\frac{4n^2}{4n^2 - 1})

= \prod_{n=1}^{\infty} \left(\frac{2n}{2n-1}\cdot\frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots

Q.E.D.

Enlaces externos[editar]