Pirrol

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Pirrol
Estructura química del pirrol
Nomenclatura IUPAC Pirrol
Pirrol
Fórmula química C4H5N
Masa molecular 67.09 g/mol
Número CAS [109-97-7]
Densidad 0.967 g/cm3
Punto de fusión -23 °C
Punto de ebullición 129-131 °C
SMILES C1=CC=CN1

El pirrol es un compuesto químico orgánico aromático y heterocíclico, un anillo de cinco miembros con la fórmula C4H5N.

Los pirroles son compuestos de anillos aromáticos más largos, incluyendo las porfirinas de hemo, las clorinas y bacterioclorinas, de clorofilas y el anillo de corrina.

Los pirroles tienen una basicidad muy baja comparada con la amina y otros compuestos aromáticos como la piridina donde el anillo del nitrógeno no se enlaza al átomo del hidrógeno. Esto es porque el par de electrones sin compartir del átomo del nitrógeno se convierte en el aromático.

El pirrol experimenta la substitución electrofílica predominante en la 2ª y 5ª posición, aunque el producto de la substitución en las posiciones 3 y 4 se obtiene en producciones bajas.

En 1994 un reporte liberado por 5 importantes compañías de cigarrillo, el pirrol es uno de los 599 aditivos de los cigarrilos. Su uso o propósito, sin embargo, es desconocido, como la mayoría de los añadidos del cigarrillo. 1

Propiedades[editar]

El pirrol tiene una muy baja basicidad comparada a las aminas más comunes y a otros compuestos aromáticos como la piridina. Esta disminuida basicidad relativa es causada por la deslocalización electrónica del par solitario del átomo de nitrógeno del anillo aromático. Luego el pirrol es una base muy débil con un pKa de alrededor de -4. La protonación del pirrol resulta en la pérdida de su aromaticidad y por lo tanto, la misma es termodinámicamente desfavorable.

Como muchas otras aminas, el pirrol se oscurece al estar expuesto al aire y la luz por lo que necesita ser destilado inmediatamente antes de usarlo.[1]

Síntesis[editar]

El pirrol es preparado a nivel industrial mediante el tratamiento del furano con amoníaco en presencia de un catalizador sólido ácido.[2]

Síntesis del pirrol a partir del furano

Otra vía sintética del pirrol involucra la descarboxilación del mucato de amonio, una sal de amonio del ácido múcico. Normalmente, la sal es calentada en un aparato de destilación con glicerol como solvente.[3]

Síntesis del pirrol a partir del mucato de amonio

Pirroles sustituidos[editar]

Existen muchos métodos para la síntesis orgánica de derivados del pirrol. Las reacciones más comunes son la síntesis de pirroles de Hantzsch, la síntesis de Knorr y la síntesis de Paal-Knorr. Otros métodos son los que abreviaremos aquí.

Los reactivos iniciales en la síntesis de Piloty-Robinson son dos equivalentes de un aldehído y de hidrazina.[4] [5] El producto es un pirrol con sustituyentes específicos en las posiciones 3 y 4. El aldehído reacciona con la diamina dando un intermediario di-imina (R–C=N−N=C–R), en el cual al agregar ácido clorhídrico resulta en el cierre del anillo y la pérdida de amoníaco dando el pirrol.

En una alternativa a la misma, se trata primero al propionaldehído con hidrazina y luego con cloruro de benzoílo a altas temperaturas junto a una irradiación de microondas:[6]

Reacción de Piloty-Robinson. Milgram 2007

En el segundo paso, tiene lugar una reacción sigmatrópica[3,3] entre los dos intermediarios de la reacción. El pirrol, finalmente, puede ser polimerizado para producir polipirrol.

Reactividad[editar]

El protón NH en los pirroles es moderadamente ácido con un pKa de 16.5. El pirrol puede entonces ser desprotonado con bases fuertes como el butil-litio o el hidruro de sodio. El pirroluro resultante es nucleófilico. Luego al tratar esta base conjugada con un electrófilo como el ioduro de metilo nos da N-metilpirrol.

Estructuras contribuyentes en la resonancia del pirrol

Las estructuras contribuyentes de resonancia del pirrol nos da un punto de vista más cercano a la reactividad del compuesto. Como el furano y el tiofeno, el pirrol es más reactivo que el benceno frente a la sustitución electrofilica aromática debido a que el mismo es capaz de estabilizar la carga positiva en el carbocatión intermedio.

Luego el pirrol experimenta la sustitución electrofílica aromática(SEAr) predominantemente en las posiciones 2 y 5. Dos reacciones especialmente notables destinadas a la producción de pirroles funcionalizados (con distintos grupos funcionales) son la Reacción de Mannich y la Reacción de Vilsmeier-Haack (abajo),[7] [8] las cuales son compatibles con una gran variedad de sustratos pirrólicos.

Formilación de un derivado del pirrol (Garabatos-Perera 2007[7] )

También el pirrol reacciona con aldehídos para dar porfirinas. Por ejemplo, el benzaldehído se condensa con el pirrol para dar tetrafenilporfirina. Además, los compuestos del pirrol pueden también participar en cicloadiciones como en la reacción de Diels-Alder bajo ciertas condiciones, por ejemplo, en presencia de catálisis ácida (de Lewis), calentamiento o alta presión.

El pirrol también polimeriza en la luz. Por lo que se puede usar un agente oxidante como el persulfato de amonio a 0 °C en la oscuridad, para controlar la polimerización.

Uso comercial[editar]

El pirrol no tiene una aplicación comercial significativa, pero el N-metilpirrol es un precursor del ácido N-metilpirrolcarboxílico, el cual se usa como precursor en la industria farmaceútica.[2]

Véase también[editar]

Enlaces externos[editar]

Referencias[editar]

  1. Armarego, Wilfred, L.F.; Chai, Christina, L.L. (2003). Purification of Laboratory Chemicals (5th edición). Elsevier. p. 346. 
  2. a b Albrecht Ludwig Harreus "Pyrrole" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi 10.1002/14356007.a22_453
  3. Practical Organic Chemistry, Vogel, 1956, Page 837, Link (12 MB)
  4. Piloty, O. (1910). «Synthese von Pyrrolderivaten: Pyrrole aus Succinylobernsteinsäureester, Pyrrole aus Azinen». Chem. Ber. 43:  pp. 489. doi:10.1002/cber.19100430182. 
  5. Robinson, Gertrude Maud; Robinson, Robert (1918). «LIV.—A new synthesis of tetraphenylpyrrole». J. Chem. Soc. 113:  pp. 639. doi:10.1039/CT9181300639. 
  6. Benjamin C. Milgram, Katrine Eskildsen, Steven M. Richter, W. Robert Scheidt, and Karl A. Scheidt (2007). «Microwave-Assisted Piloty-Robinson Synthesis of 3,4-Disubstituted Pyrroles» (Note). J. Org. Chem. 72 (10):  pp. 3941–3944. doi:10.1021/jo070389. PMID 17432915. 
  7. a b Jose R. Garabatos-Perera, Benjamin H. Rotstein, and Alison Thompson (2007). «Comparison of Benzene, Nitrobenzene, and Dinitrobenzene 2-Arylsulfenylpyrroles». J. Org. Chem. 72 (19):  pp. 7382–7385. doi:10.1021/jo070493r. PMID 17705533. 
  8. The 2-sulfenyl group in the pyrrole substrate serves as an activating group and as a protective group that can be removed with Raney nickel