Nematocisto

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Diferentes tipos de nematocistos descargados.

Un nematocisto es un tipo de cnido (orgánulo producido por unas células llamadas cnidocitos presentes en los Cnidarios), que es utilizado para la inyección de toxinas para la captura de presas y la defensa del animal. Es una compleja estructura intracelular que contiene un tubo altamente enrollado.

Los nematocistos son finas cápsulas compuestas por un material semejante a la quitina y que contiene una "hebra" tubular enrollada, o filamento, que es una continuación del extremo estrechado de la cápsula. Este último está recubierto por una pequeña tapa u opérculo. El interior del filamento no descargado puede llevar minúsculas púas o espinas. No todos los nematocistos tienen púas o inyectan veneno. Algunos, por ejemplo, no penetran en la presa sino que se retraen rápidamente como un resorte después de la descarga, apresando y sujetando una parte de la presa capturada en el filamento enrollado.

Excepto en los Antozoos, los cnidocitos están provistos de un cnidocilo en forma de gatillo, que es un cilio modificado. Los cnidocitos de los antozoos tienen un mecanorreceptor ciliado algo diferente. en algunas anémonas, y quizá en otros cnidarios, pequeñas moléculas orgánicas de la presa "sintonizan" los mecanorreceptores, sensibilizándolos en la frecuencia de vibración por la natación de la presa. La estimulación táctil produce la descarga del nematocisto.

Pruebas recientes indican que la descarga se debe a una combinación de fuerzas tensionales generadas durante la formación del nematocisto, y a la asombrosa presión osmótica que hay en el interior del mismo: 140 atmósferas. Cuando se estimula su descarga, la alta presión osmótica interna hace que el agua se precipite dentro de la cápsula. El opérculo se abre, y el rápido incremento de la presión hidrostática dentro de la cápsula, empuja con gran fuerza al filamento y éste se evagina hacia el exterior. En el extremo evertido del filamento, las púas se extienden haca fuera como diminutas varillas con forma de espadas. Esta diminuta arma inyecta veneno cuando penetra en la presa.

Toxicidad[editar]

Los nematocistos de la mayoría de los cnidarios no son perjudiciales para el hombre y en el peor de los casos pueden ser una molestia. No obstante la picaduras de la Physalia physalis y de ciertas medusas son muy dolorosas y, en algunos casos, peligrosas.

Desarrollo[editar]

La mayoría de los nematocistos son similares en su composición química. La capsula y las paredes del tubo son conocidas por contener proteínas como colágeno unidas por lazos disulfuro, aun así la composición química de la capsula ye l tubo es muy diferente (Watson & Mariscal, 1984a).

Estudios resientes revelan que el desarrollo del nematocisto se debe al aparato de golgi asociado con microtúbulos que rodean la capsula. La función de los microtúbulos en la formación de los nematocisto permanece incierta (Watson & Mariscal, 1984b).

La primera etapa del desarrollo de cualquier tipo de nematocisto es la visible diferenciación de una vesícula ovoide. Un tubo exterior a la vesicula crece fuera por agregación gracias a la secreción de una región granular citoplasmática (aparentemente el aparato de Golgi) alrededor de la punta del tubo externo, y puede ser visto al fusionarse a la punta del tubo (imagen 1). Cuando está completamente desarrollado en los cnidoblastos , formarán "nematocistos microbasicos-mastigoforos" .El tubo puede ser 7-10 veces la longitud de la cápsula en desarrollo. El tubo externo de estos nemato-quistes se estrecha suavemente desde la base hasta la punta de la vesícula (Skaer, 1973).

Posteriormente la punta del tubo externo resulta en una invaginación y pasa de nuevo por el tubo externo de la vesícula (imagen 2). Aparénteme la punta del tubo (que es la más delgada) es la que entra primero a la vesícula y posteriormente ingresa la parte con un diámetro superior (Skaer, 1973).

El tubo que está dentro de las vesículas empieza a enrollarse formando una hélice del largo de la capsula y aproximadamente 3 enrollamientos se agregan cada 4 a 5 minutos y consecutivamente se van agregando de forma más lenta. Esta hélice está suspendida dentro de la cápsula y en ningún momento toca la pared y a medida que el tubo se internalizar el volumen de la capsula incrementa (imagen 3) (Skaer, 1973).

El tubo externo se va a acortando y aproximadamente a los 15 enrollamientos el tubo esta casi internalizado (figura 4). Al principio los enrollamientos tienen la misma tensión, pero posteriormente los que se encuentran más cerca de la punta de la vesícula están mas relajados que los que se agregaron primero (Skaer, 1973).

Este enrollamiento continuas hasta que el la última parte del tubo se reacomoda en una línea recta (imagen 5 y 6) En este punto la estructura interna se vuelve mas flexible y forman el extremo del nematocisto maduro Skaer, 1973).

En esta etapa el nidoblasto migra a los tentáculos donde el resto de las elongaciones y reducciones finales ocurren (figura 7). Se mueven a través del tejido con una velocidad de 15 μm por minuto. A medida que la célula se mueve el nematocisto para terminar en la región posterior del opérculo, en caso donde la dirección sea contraria el nematocisto es capas de moverse para ocupar la posición correcta (Skaer, 1973).

Imagen 1. Formación del tubo en y unión a la punta de la vesícula.
Imagen 2. Entrada del tubo a la vesícula
Imagen 3. Enrollamiento del tubo en la vesícula
Imagen 4. Enrollamiento del tubo en la vesícula
Imagen 5. Reacomodamiento del tubo en la vesícula
Imagen 6. Reacomodamiento del tubo en la vesícula
Imagen 7. Migración
Nematocisto maduro

Referencias[editar]

  • Hickman, C. P., Ober, W. C. & Garrison, C. W., 2006. Principios integrales de zoología, 13ª edición. McGraw-Hill-Interamericana, Madrid (etc.), XVIII+1022 pp. ISBN 84-481-4528-3.
  • Skaer, R. J. (1973). The secretion and development of nematocysts in a siphonophore. Journal of cell science, 13(2), 371–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4148557
  • Watson, G. M., & Mariscal, R. N. (1984a). Calcium cytochemistry of nematocyst development in catch tentacles of the sea anemone Haliplanella luciae (Cnidaria: Anthozoa) and the molecular basis for tube inversion into the capsule. Journal of Ultrastructure Research, 86(2), 202–214. doi:10.1016/S0022-5320(84)80059-3
  • Watson, G. M., & Mariscal, R. N. (1984b). Ultrastructure and sulfur cytochemistry of nematocyst development in catch tentacles of the sea anemone Haliplanella luciae (cnidaria: Anthozoa). Journal of Ultrastructure Research, 87(2), 159–171. doi:10.1016/S0022-5320(84)80075-1