Movimiento uniformemente acelerado

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En física, el movimiento uniformemente acelerado (MUA) es aquel movimiento en el que la aceleración que experimenta un cuerpo permanece constante (en magnitud y dirección) en el transcurso del tiempo.

  1. El movimiento rectilíneo uniformemente acelerado, en el que la trayectoria es rectilínea, que se presenta cuando la aceleración y la velocidad inicial tienen la misma dirección.
  2. El movimiento parabólico, en el que la trayectoria descrita es una parábola, que se presenta cuando la aceleración y la velocidad inicial no tienen la misma dirección.

En el movimiento circular uniforme, la aceleración tan solo es constante en módulo, pero no lo es en dirección, por ser cada instante perpendicular a la velocidad, estando dirigida hacia el centro de la trayectoria circular (aceleración centrípeta).Por ello, no puede considerársele un movimiento uniformemente acelerado, a menos que nos refiramos a su aceleración angular.

Movimiento uniformemente acelerado en mecánica clásica[editar]

En mecánica clásica el movimiento de una partícula sometida a una fuerza constante resulta ser un movimiento uniformemente acelerado. En el caso más general la trayectoria de una partícula sometida a una fuerza constante resulta ser una parábola.

Para analizar la situación supondremos que se aplica una fuerza constante a una partícula que se mueve inicialmente con velocidad v_0 \,. Sin pérdida de generalidad, podemos suponer que el movimiento se presenta en el plano XY sujeto a las ecuaciones:


\left \{
\begin{array}{llll}
\ddot{x}=0   & \mathrm{con} \quad x(0)=0 & \mathrm{y} \quad \dot{x}(0)=v_{0,x}t\\
\ddot{y}=a_y & \mathrm{con} \quad y(0)=0 & \mathrm{e} \quad \dot{y}(0)=v_{0,y}t
\end{array}
\right .

Integrando las ecuaciones diferenciales anteriores se tienen las siguientes velocidades y desplazamientos:


\left \{
\begin{array}{lll}
\dot{x}(t)=v_{0,x}      & \Rightarrow & x(t)=v_{0,x}t \\
\dot{y}(t)=v_{0,y}+a_0t & \Rightarrow & y(t)=v_{0,y}t + \cfrac{a_0 t^2}{2}
\end{array}
\right .

Para encontrar la ecuación de la trayectoria se despeja el tiempo de la expresión para la coordenadas \scriptstyle x(t) y se substituye \scriptstyle t(x) para obtener \scriptstyle y(t(x)):

 y(x) = \frac{v_{0,y}}{v_{0,x}} + \frac{a_0}{2v_{0,x}^2}x^2

resultado que representa la ecuación de una parábola.

Movimiento bajo fuerza constante en mecánica relativista[editar]

En mecánica relativista no existe un equivalente exacto del movimiento uniformemente acelerado, ya que la aceleración depende de la velocidad y mantener una aceleración constante requeriría una fuerza progresivamente creciente. Además desde el punto de vista de la teoría de la relativdad especial no es realista suponer que pueda existir un cuerpo con aceleración constante indefinidamente ya que tras un tiempo suficientemente largo de aceleración uniforme el cuerpo acabaría teniendo una energía cinética infinita, lo cual no es realista. Para un cuerpo hipotético partiendo del reposo y sometido a la aceleración constante a, ese tiempo es igual a la c/a (c:velocidad de la luz). Existen dos casos interesantes de movimiento bajo fuerza constante:

Movimiento bajo fuerza constante en mecánica cuántica[editar]

En mecánica cuántica no se puede hablar de trayectorias ya que la posición de la partícula no puede determinarse con precisión arbitraria, por lo que sólo existen análogos cuánticos imperfectos del movimiento rectilíneo clásico. El equivalente cuántico más simple de movimiento uniformemente acelerado es el de una partícula cuántica (no relativista y sin espín) en un campo de fuerzas conservativo en el que la energía potencial es una función lineal de la coordenada. En ese caso la ecuación de Schrödinger estacionaria es:

(*)-\frac{\hbar^2}{2m}\left( \frac{\part^2 \psi}{\part x^2} + \frac{\part^2 \psi}{\part y^2} +
\frac{\part^2 \psi}{\part z^2} \right)- xF \psi(x,y,z) = E\psi(x,y,z)

Donde:

\hbar\, es la constante de Planck racionalizada.
m\, es la masa de la partícula.
F\, es la fuerza que se ejerce sobre la partícula.
E\, es la energía de un estado estacionario del hamiltoniano cuántico.

Para ver si es posible encontrar soluciones particulares mediante el método de separación de variables se postula la forma:

\psi(x,y,z) = \psi_l(x)\psi_t(y,z)

Donde l es reminiscente de longitudinal y t de transversal, ambas funciones pueden relacionarse con la variación en la dirección de la fuerza y en las direcciones transversales a la fuerza.