Modelo probabilístico

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos de muestreos de datos con comportamiento que se supone aleatorio.

El modelo probabilístico como modelo de recuperación de independencia binaria fue desarrollado por Robertson y Spark Jones. Este modelo afirma que pueden caracterizarse los documentos de una colección mediante el uso de términos de indización. Obviamente existe un subconjunto ideal de documentos que contiene únicamente los documentos relevantes a una necesidad de información para la cual se realiza una ponderación de los términos que componen la consulta realizada por el usuario. A continuación el sistema calcula la semejanza entre cada documento de la colección y la consulta y presentando los resultados ordenados por grado de probabilidad de relevancia en la relación a la consulta. Este modelo evita la comparación exacta ( existencia o no de un término de la consulta en el documento) y posibilita al usuario realizar un proceso de retroalimentación valorando la relevancia de los documentos recuperados para que el sistema pueda calcular la probabilidad en posteriores consultas de que los documentos recuperados sean o no relevantes en función de los términos utilizados en la consulta sean o no relevantes.

Pueden ser modelos probabilísticos discretos o continuos. Los primeros, en su mayoría se basan en repeticiones de pruebas de Bernoulli. Los más utilizados son:

Por otro lado, tal como se ha mencionado antes, existen modelos probabilísticos continuos, entre ellos destacamos:

Véase también[editar]