Matriz involutiva

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En matemáticas, una matriz involutiva es una matriz cuadrada (tiene igual número de filas que de columnas) que es su propia inversa. Es decir, la multiplicación por la matriz A es una involución si y sólo si A² = I. Esto es simplemente una consecuencia del hecho de que cualquier matriz no singular multiplicada por su inversa es la identidad.

Ejemplos[editar]


\begin{array}{cc}
\mathbf{I}=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
; & 
\mathbf{I}^{-1}=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\\
\\
\mathbf{R}=\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
; &
\mathbf{R}^{-1}=\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\\
\\
\mathbf{S}=\begin{pmatrix}
+1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}
; &
\mathbf{S}^{-1}=\begin{pmatrix}
+1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\\
\end{array}

Donde

I es una matriz identidad (la cual es involutiva por defecto);
R es una matriz identidad con un par de filas intercambiadas;
S es una matriz diagonal cuyos elementos en su diagonal son ±1.

Véase también[editar]

Enlaces externos[editar]