Inverso multiplicativo (aritmética modular)

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

El multiplicador modular inverso de un entero n módulo p es un entero m tal que

n-1 m (mod p)

Esto significa que es el inverso multiplicativo en el anillo de los enteros módulo p. Es equivalente a

mn 1 (mod p)

El multiplicador inverso de n módulo p existe si y sólo si n y p son coprimos, es decir, si MCD(n, p)=1.

Si existe el multiplicador modular inverso de n módulo p, se puede definir la operación de división entre n módulo p mediante la multiplicación por el inverso.

Explicación[editar]

A veces se pueden encontrar muchos valores de m para los cuales sea cierta esta congruencia. El m seleccionado como multiplicador modular inverso es generalmente el natural más pequeño posible (o simplemente el que sea miembro del conjunto Zn en el que n sea el módulo).

Por ejemplo:

la división gracias a que m ( modulo) es la multiplicación o la prueba de la división

)

nos da

3m 1 (mod 11)

El m más pequeño que resuelve esta congruencia es 4; así pues, el multiplicador modular inverso de 3 (mod 11) es 4. Sin embargo, otro m que resuelve la congruencia es 15 (fácilmente determinable sumando p al inverso obtenido).

Cálculo[editar]

Algoritmo Euclidiano Extendido[editar]

El multiplicador modular inverso de n módulo p se puede obtener mediante el Algoritmo de Euclides. En particular, invocando el algoritmo extendido de Euclides con n y p como argumentos se obtiene una tripla (x,y,mcd(n,p)) tal que

xn + yp = \gcd(n,p)\,.

Si MCD(n,p)=1 entonces

xn \equiv 1 \pmod{p},

de donde x es el inverso modular de n módulo p. Si el MCD(n,p)≠ 1 entonces no existe el modular inverso. Este algoritmo se ejecuta en un tiempo O(log(p)2) (asumiendo que |n|<p).

Ejemplo[editar]

Por ejemplo, supongamos que queremos calcular el inverso de 117 módulo 244. Por tanto con nuestra nomenclatura p=117 y n=244 Lo primero que hacemos es aplicar el algoritmo de Euclides para verificar que mcd(n,p)=1. Posteriormente aprovechamos los pasos intermedios para hallar el mcd(n,p) en términos de n y p y así obtener el inverso de n que notaremos por n-1.

  • Paso 1:Como n > p entonces podemos expresar n como n=qp+r. Es decir 244=2*117+10
  • Paso 2:Como 117>10 entonces 117=11*10+7
  • Paso 3:Como 10>7 entonces 10=1*7+3
  • Paso 4:Como 7>3 entonces 7=2*3+1
  • Paso 5:Como 3>1 entonces 3=1*3+0

De esta forma demostramos que mcd(244,117)=1

  • Paso 6: Del paso 4 despejo el resto (el número que queda a la derecha de la suma), quedando 1=7-3*2
  • Paso 7: Del paso 3 despejo el resto quedando 3=10-1*7. Si sustituimos en la ecuación del paso 6 tenemos 1=7-(10-1*7)*2=-2*10+3*7
  • Paso 8: Del paso 2 despejo el resto quedando 7=117-11*10. Si sustituimos en la ecuación del paso 7 tenemos 1=-2*10+3(117-11*10)=3*117-35*10
  • Paso 9: Del paso 1 despejo el resto quedando 10=244-2*117. Si sustituimos en la ecuación del paso 8 obtenemos 1=3*117-35*(244-2*117)=-35*244+73*117. De esta ecuación podemos decir que n-1=73 que es lo que queríamos calcular.
  • Paso 10: Si n-1 es negativo, el inverso n-1 se recalcula como n-1 + p.

Exponenciación Modular Directa[editar]

El método de exponenciación modular directa como alternativa al algoritmo euclidiano extendido es el siguiente:

De acuerdo con el Teorema de Euler, si n es coprimo con p, es decir, MCD(n,p)=1, entonces,

nφ(p) 1 (mod p)

Esto se deduce del Teorema de Lagrange y del hecho de que n pertenece al grupo multiplicativo de enteros módulo n (\mathbb{Z}/p\mathbb{Z})^{*} si y sólo si n es coprimo con p.

Así pues,

nφ(p)-1 n-1 (mod p)

donde φ(p) es la Función φ de Euler.

De esta forma se puede obtener el multiplicador modular inverso de n módulo p de forma directa:

nφ(p)-1 m (mod p)

En el caso especial en que p es primo,

φ(p) = p - 1

Se puede usar la Exponenciación binaria para ejecutar este método de forma eficiente para lo cual se requieren O(log(p)) operaciones modulares, de donde el tiempo de ejecución es O(log(p)3) cuando se usa el método escolar y O(log(p)2 log(log(p))log(log(log(p)))) cuando se usa la multiplicación basada en FFT de Strassen.

Este método es generalmente más lento que el algoritmo euclidiano extendido pero se usa a veces cuando ya existe una implementación de la exponenciación modular.

Una desventaja de este método es que necesita φ(p) porque la única forma de computación eficiente requiere el conocimiento de los factores de p.

Véase también[editar]

Enlaces externos[editar]