Hormigón armado

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Armadura y estribos antes del hormigonado.

La técnica constructiva del hormigón armado consiste en la utilización de hormigón reforzado con barras o mallas de acero, llamadas armaduras. También se puede armar con fibras, tales como fibras plásticas, fibra de vidrio, fibras de acero o combinaciones de barras de acero con fibras dependiendo de los requerimientos a los que estará sometido. El hormigón armado se utiliza en edificios de todo tipo, caminos, puentes, presas, túneles y obras industriales. La utilización de fibras es muy común en la aplicación de hormigón proyectado o shotcrete, especialmente en túneles y obras civiles en general.

Historia[editar]

Pilar de un puente de hormigón armado.
Armado de la construcción de la Basílica de la Sagrada Familia.

La invención del hormigón armado se suele atribuir al constructor William Wilkinson, quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para «la mejora de la construcción de viviendas, almacenes y otros edificios resistentes al fuego». En el 1855 Joseph-Louis Lambot publicó el libro «Les bétons agglomerés appliqués á l'art de construire» (Aplicaciones del hormigón al arte de construir), en donde patentó su sistema de construcción, expuesto en la exposición mundial en París, el año 1854, el cual consistía en una lancha de remos fabricada de hormigón armado con alambres. François Coignet en 1861 ideó la aplicación en estructuras como techos, paredes, bóvedas y tubos. A su vez el francés Joseph Monier patentó varios métodos en la década de 1860. Muchas de estas patentes fueron obtenidas por G.A. Wayss en 1866 de las empresas Freytag und Heidschuch y Martenstein, fundando una empresa de hormigón armado, en donde se realizaban pruebas para ver el comportamiento resistente del hormigón, asistiendo el arquitecto prusiano Matthias Koenen en estas pruebas, efectuando cálculos que fueron publicados en un folleto llamado «El sistema Monier, armazones de hierro cubiertos en cemento». Que fue complementado en 1894 por Edmond Coignet y De Tédesco, método publicado en Francia agregando el comportamiento de elasticidad del hormigón como factor en los ensayos, estos cálculos fueron confirmados por otros ensayos realizados por Eberhard G. Neumann en 1890. Bauschinger y Bach comprobaron las propiedades del elemento frente al fuego y su resistencia logrando ocasionar un gran auge, por la seguridad del producto en Alemania. Fue François Hennebique quien ideó un sistema convincente de hormigón armado, patentado en 1892, que utilizó en la construcción de una fábrica de hilados en Tourcoing, Lille, en 1895.[1]

En España, el hormigón armado penetra en Cataluña de la mano del ingeniero Francesc Macià con la patente del francés Joseph Monier. Pero la expansión de la nueva técnica se producirá por el empuje comercial de François Hennebique por medio de su concesionario en San Sebastián Miguel Salaverría y del ingeniero José Eugenio Ribera, entonces destinado en Asturias, que en 1898 construirá los forjados de la cárcel de Oviedo, el tablero del puente de Ciaño y el depósito de aguas de Llanes.

El primer edificio de entidad construido con hormigón armado es la fábrica de harinas La Ceres en Bilbao,[2] de 1899-1900 (aún hoy en pie y rehabilitada como viviendas) y el primer puente importante, con arcos de 35 metros de luz, el levantado sobre el Nervión-Ibaizabal en La Peña, para el paso del tranvía de Arratia entre Bilbao y Arrigorriaga (desaparecido en las riadas del año 1983).[3] Ninguna de las dos obras fue dirigida por Ribera, quien pronto se independizó de la tutela del empresario francés, sino por los jóvenes ingenieros Ramón Grotta y Gabriel Rebollo de la oficina madrileña de François Hennebique.

Diseño de estructuras de hormigón armado

Hennebique y sus contemporáneos, basaban el diseño de sus patentes en resultados experimentales, mediante pruebas de carga; los primeros aportes teóricos los realizan prestigiosos investigadores alemanes, tales como Wilhem Ritter, quien desarrolla en 1899 la teoría del «Reticulado de Ritter-Mörsch». Los estudios teóricos fundamentales se gestarán en el siglo XX.

Existen varias características responsables del éxito del hormigón armado:

  • El coeficiente de dilatación del hormigón es similar al del acero, siendo despreciables las tensiones internas por cambios de temperatura.
  • Cuando el hormigón fragua se contrae y presiona fuertemente las barras de acero, creando además fuerte adherencia química. Las barras, o fibras, suelen tener resaltes en su superficie, llamadas corrugas o trefilado, que favorecen la adherencia física con el hormigón.
  • Por último, el pH alcalino del cemento produce la pasivación del acero, fenómeno que ayuda a protegerlo de la corrosión.
  • El hormigón que rodea a las barras de acero genera un fenómeno de confinamiento que impide su pandeo, optimizando su empleo estructural.

Cálculo de elementos de hormigón[editar]

Fundamento[editar]

El hormigón en masa es un material moldeable y con buenas propiedades mecánicas y de durabilidad, y aunque resiste tensiones y esfuerzos de compresión apreciables tiene una resistencia a la tracción muy reducida. Para resistir adecuadamente esfuerzos de torsión es necesario combinar el hormigón con un esqueleto de acero. Este esqueleto tiene la misión resistir las tensiones de tracción que aparecen en la estructura, mientras que el hormigón resistirá la compresión (siendo más barato que el acero y ofreciendo propiedades de durabilidad adecuadas).

Por otro lado, el acero confiere a las piezas mayor ductilidad, permitiendo que las mismas se deformen apreciablemente antes de la falla. Una estructura con más acero presentará un modo de fallo más dúcil (y, por tanto, menos frágil), esa es la razón por la que muchas instrucciones exigen una cantidad mínima de acero en ciertas secciones críticas.

En los elementos lineales alargados, como vigas y pilares las barras longitudinales, llamadas armado principal o longitudinal. Estas barras de acero se dimensionan de acuerdo a la magnitud del esfuerzo axial y los momentos flectores, mientras que el esfuerzo cortante y el momento torsor condicionan las características de la armadura transversal o secundaria.

Cálculo vigas y pilares de hormigón armado[editar]

La simple teoría de vigas de Euler-Bernoulli no es adecuada para el cálculo de vigas o pilares de hormigón armado. Los elementos resistentes de hormigón armado presentan un mecanismo resistente más complejo debido a la concurrencia de dos materiales diferentes, hormigón y acero, con módulos de Young muy diferentes y los momentos de inercia son variables de acuerdo al tamaño de las fisuras de los elementos. Las diferentes propiedades mecánicas de hormigón y acero implican que en un elemento de hormigón armado la tensión mecánica de las armaduras y el hormigón en contacto con ellas sean diferentes, ese hecho hace que las ecuaciones de equilibrio que enlazan los esfuerzos internos inducidos por las fuerzas y tensiones en hormigón y acero no sean tan simples como las de secciones homogéneas, usadas en la teoría de Euler-Bernouilli.

La Instrucción Española del Hormigón Estructural las ecuaciones de equilibrio mecánico para el esfuerzo axil N y el momento flector M de una sección rectangular pueden escribirse de forma muy aproximada como:

\begin{cases}
N = N_c(X) + U_{s1}\cfrac{\sigma_{s1}(X)}{f_{yd}} + U_{s2}\cfrac{\sigma_{s2}(X)}{f_{yd}} \\
Ne_1 = M_c(X,d) + U_{s2}\cfrac{\sigma_{s2}(X)}{f_{yd}} (d-d') \\
Ne_2 = M_c(X,d') - U_{s1}\cfrac{\sigma_{s1}(X)}{f_{yd}} (d-d') \end{cases}, \qquad
e_1 = \frac{d-d'}{2} + \frac{M}{N},\ e_2 = \frac{d-d'}{2} - \frac{M}{N}

Donde:

d, d', X\,, son magnitudes geométricas. Respectivamente: el canto útil, el recubrimiento y la profundidad de la fibra neutra respecto a la fibra más comprimida del hormigón.
\sigma_{s1}, \sigma_{s2}, f_{yd}\, son respectivamente la "tensión de la armadura de tracción" (o menos comprimida) la "armadura de compresión" (o más comprimida) y la tensión de diseño del acero de las armaduras.
U_{s1}, U_{s2}\,, son las cuantías mecánicas, relacionadas con el área transversal de acero de las armaduras.
N_c(X), M_c(X,\cdot)\,, son el esfuerzo axil y el momento flector resultantes de las tensiones de compresión en el hormigón, en función de la posición de la línea neutra.

Si se usa el diagrama rectángulo normalizado para representar la relación de tensión-deformación del hormigón entonces las tensiones de la armadura de tracción y de compresión se pueden expresar las funciones anteriores como:

\frac{\sigma_{s1}(X)}{f_{yd}} = \begin{cases} -1 & -\infty<X<0,625d\\
\cfrac{5}{3}\cfrac{X-d}{X} & 0,625d<X<h\\ \cfrac{X-d}{X-0,4h} & h<X \end{cases}, \quad 
\frac{\sigma_{s2}(X)}{f_{yd}} = \begin{cases} -1 & -\infty<X<-0,5d'\\
\cfrac{2}{3}\cfrac{X-d'}{d'} & -0,5d'<X<2,5d'\\ 1 & 2,5d'<X \end{cases}

Por otra parte los esfuerzos soportados por el bloque comprimido de hormigón vienen dados por:

N_c(X) = \begin{cases} 0 & -\infty<X \le 0\\
0,68f_{cd}bX & 0<X \le 1,25h\\ 0,85f_{cd}bh & 1,25h<X \end{cases}, \quad 
M_c(X,y) = \begin{cases} 0 & -\infty<X \le 0 \\
0,68bX(y-0,4X) & 0<X \le 1,25h\\ 0,85f_{cd}bh/y-0,5h) & 1,25h<X \end{cases}

Dimensionado de secciones[editar]

El problema del dimensionado de secciones se refiere a dadas unas cargas y unas dimensiones geométricas de la sección determinar la cantidad de acero mínima para garantizar la adecuada resistencia del elemento. La minimización del coste generalmente implica considerar varias formas para la sección y el cálculo de las armaduras para cada una de esas secciones posibles, para calcular el coste orientativo de cada posible solución.

Una sección de una viga sometida a flexión simple, requiere obligatoriamente una armadura (conjunto de barras) de tracción colocada en la parte traccionada de la sección, y dependiendo del momento flector puede requerir también una armadura en la parte comprimida. El área de ambas armaduras de una sección rectangular puede calcularse aproximadamente mediante los siguientes juegos de fórmulas:

U_{s2} = \begin{cases}
0 & M_d < 0,375 U_0 d_1 \\
\frac{M_d -0,375 U_0 d_1}{d_1 - d_2} & M_d \ge 0,375U_0 d_1 \end{cases},
\qquad A_{s2} = \frac{U_{s2}}{f_{yd}}

Donde:

U_{s2}\,, es la cuantía mecánica de armadura de compresión.
A_{s2}\,, es el área total de la armadura de compresión.
U_0 = 0,85 f_{cd} b d_1\,, es la cuantía mecánica de armadura de compresión.
d_1, d_2\,, distancias desde la fibra más comprimida a la armaduras de tracción y a la armadura de compresión.
b\,, ancho de la sección.

Con las mismas notaciones, la armadura de tracción se calcula como:

U_{s1} = \begin{cases}
U_0 \left(1- \sqrt{1-\frac{2M_d}{U_0 d_1}} \right) & M_d < 0,375 U_0 d_1 \\
0,5U_0 + U_{s2}  & M_d \ge 0,375U_0d \end{cases},
\qquad A_{s1} = \frac{U_{s1}}{f_{yd}}

Comprobación de secciones[editar]

El problema de comprobación consiste en dada una sección completamente definida, por sus dimensiones geométricas y un cierto número de barras con una disposición bien definida, comprobar mediante cálculo si dicha sección será capaz de soportar los esfuerzos inducidos en ella por la acción de cargas conocidas.

Definiciones[editar]

  • Armadura Principal (o Longitudinal): Es aquella requerida para absorber los esfuerzos de tracción en la cara inferior de en vigas solicitadas a flexión compuesta, o bien la armadura longitudinal en columnas.
  • Armadura Secundaria (o Transversal): Es toda armadura transversal al eje de la barra. En vigas toma esfuerzos de corte, mantiene las posiciones de la armadura longitudinal cuando el hormigón se encuentra en estado fresco y reduce la longitud efectiva de pandeo de las mismas.
  • Amarra: Nombre genérico dado a una barra o alambre individual o continuo, que abraza y confina la armadura longitudinal, doblada en forma de círculo, rectángulo, u otra forma poligonal, sin esquinas reentrantes. Ver Estribos.
    • Cerco:: Es una amarra cerrada o doblada continua. Una amarra cerrada puede estar constituida por varios elementos de refuerzo con ganchos sísmicos en cada extremo. Una amarra doblada continua debe tener un gancho sísmico en cada extremo.
    • Estribo: Armadura abierta o cerrada empleada para resistir esfuerzos de corte, en un elemento estructural; por lo general, barras, alambres o malla electrosoldada de alambre (liso o estriado), ya sea sin dobleces o doblados, en forma de L, de U o de formas rectangulares, y situados perpendicularmente o en ángulo, con respecto a la armadura longitudinal. El término estribo se aplica, normalmente, a la armadura transversal de elementos sujetos a flexión y el término amarra a los que están en elementos sujetos a compresión. Ver también Amarra. Cabe señalar que si extisten esfuerzos de torsión, el estribo debe ser cerrado.
    • Zuncho: Amarra continua enrollada en forma de hélice cilíndrica empleada en elementos sometidos a esfuerzos de compresión que sirven para confinar la armadura longitudinal de una columna y la porción de las barras dobladas de la viga como anclaje en la columna. El espaciamiento libre entre espirales debe ser uniforme y alineado, no menor a 80 mm ni mayor a 25 mm entre sí. Para elementos hormigonados en obra, el diámetro de los zunchos no deben ser menor que 10 mm.
  • Barras de Repartición: En general, son aquellas barras destinadas a mantener el distanciamiento y el adecuado funcionamiento de las barras principales en las losas de hormigón armado.
  • Barras de Retracción: Son aquellas barras instaladas en las losas dondela armadura por flexión tiene un sólo sentido. Se instalan en ángulo recto con respecto a la armadura principal y se distribuyen uniformemente, con una separación no mayor a 3 veces el espesor de la losa o menor a 50 cm entre sí, con el objeto de reducir y controlar las grietas que se producen debido a la retracción durante el proceso de fraguado del hormigón, y para resistir los esfuerzos generados por los cambios de temperatura.
  • Gancho Sísmico: Gancho de un estribo, cerco o traba, con un doblez de 135º y con una extensión de 6 veces el diámetro (pero no menor a 75 mm) que enlaza la armadura longitudinal y se proyecta hacia el interior del estribo o cerco.
  • Traba: Barra continua con un gancho sísmico en un extremo, y un gancho no menor de 90º, con una extensión mínima de 6 veces el diámetro en el otro extremo. Los ganchos deben enlazar barras longitudinales periféricas. Los ganchos de 90º de dos trabas transversales consecutivas que enlacen las mismas barras longitudinales, deben quedar con los extremos alternados.

Normativas relacionadas[editar]

  • La normativa española Instrucción Española del Hormigón Estructural EHE-99 de 1999, quedó derogada definitivamente el 1 de diciembre de 2008 en favor de la EHE-08.[4]
  • La normativa de ámbito europeo, aunque no obligado cumplimiento es el Eurocódigo 2: Proyecto de Estructuras de Hormigón.
  • La Normativa Argentina de referencia es el Reglamento CIRSOC 201 - 2005, que reemplaza al antiguo CIRSOC 201-1982. La nueva normativa está basada en el Reglamento ACI Norteamericano, en contraposición con el de 1982, que tomaba la base de la antigua normativa DIN alemana.
  • El citado Reglamento Estadounidense es el ACI 318-05 (American Concrete Institute).

Véase también[editar]

Referencias[editar]

Bibliografía[editar]

  • Jürgen Mattheiss. (1980). Hormigón armado, hormigón armado aligerado, hormigón pretensado. Ed. Reverté S.A. ISBN 84-291-2057-2. 
  • Rosell, Jaume; Cárcamo, Joaquín (1995). Los orígenes del hormigón armado y su introducción en Bizkaia. La fábrica Ceres de Bilbao. Colegio Oficial de Aparejadores y Arquitectos Técnicos de Bizkaia. ISBN 84-922167-0-0. 

Enlaces externos[editar]