Hipografo

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
El hipografo de una función de valor real es la zona "bajo" la curva, incluyendo los puntos de la curva misma.

En matemática, el hipografo de una función real f : Rn → R es el conjunto de puntos situados en o debajo de este grafo:

\mbox{hyp} f = \{ (x, \mu) \, : \, x \in \mathbb{R}^n,\, \mu \in \mathbb{R},\, f(x)\ge \mu \} \subseteq \mathbb{R}^{n+1}.

Análogamente, el conjunto de puntos en o sobre esta función es un epigrafo.

Cuando nos referimos a relaciones, tales como relaciones de preferencia en economía, un conjunto definido de esta manera generalmente se llama conjunto contorno inferior.

Propiedades[editar]

Una función es cóncava si y sólo si su hipografo es un conjunto convexo. El hipografo de una función afín real g : Rn → R es un semiplano en Rn+1.

Una función es superiormente semicontinua si y sólo si su hipografo es cerrado.