Funcional lineal

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En álgebra lineal, una forma o funcional lineal (también llamado covector o 1-forma) es una aplicación o transformación lineal de un espacio vectorial sobre su cuerpo de escalares, es decir, esta transformación aplica vectores en escalares.

En general, si V es un espacio vectorial sobre un cuerpo k, entonces un funcional lineal ƒ es una función de V a k que es lineal:

f(\vec{v}+\vec{w}) = f(\vec{v})+f(\vec{w}) para todo \vec{v}, \vec{w}\in V
f(a\vec{v}) = af(\vec{v}) para todo \vec{v}\in V, a\in k

Al conjunto de todas las transformaciones lineales de un espacio vectorial sobre su cuerpo, Homk(V,k), se le llama espacio dual y se le denota generalmente por V* o V′.

Véase también[editar]