Función zeta de Hasse-Weil

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En matemática, la función zeta de Hasse-Weil asociada a una variedad algebraica V definida sobre un cuerpo numérico K es uno de los dos tipos más importantes de funciones L. Estas funcionesL son llamadas 'globales', en el sentido en que se definen como productos de Euler en términos de funciones zeta locales. Ellas forman una de las dos principales clases de funciones L globales, las otras son las funciones L asociadas a la representación automórfica. Se podría conjeturar que en realidad existe solo un tipo esencial de función L global, con dos descripciones (según se aproxime uno desde una vaiedad algebraica, o desde una representación automórfica); esta sería una generalización muy amplia de la conjetura de Taniyama-Shimura, que es en si misma un resultado muy profundo y reciente (2004) en la teoría de números.

La descripción de la función zeta de Hasse-Weil hasta un número finito de factores de su producto de Euler es relativamente simple. Su desarrollo sigue la sugerencias iniciales de Helmut Hasse y André Weil, motivados por el caso en que V es un punto simple, y los resultados de la función zeta de Riemann .


Referencias[editar]

  • J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), 1969/1970, Sém. Delange-Pisot-Poitou, exposé 19