Funciones elípticas de Weierstrass

De Wikipedia, la enciclopedia libre
(Redirigido desde «Función elíptica de Weierstrass»)
Saltar a: navegación, búsqueda
Símbolo de la función P de Weierstrass P.

En el ámbito de las matemáticas, las funciones elípticas de Weierstrass son un grupo de funciones elípticas que poseen una forma particularmente simple (cf funciones elípticas de Jacobi); han sido designadas en honor al matemático Karl Weierstrass. Esta clase de funciones es también llamada funciones P y generalmente se las escribe utilizando el símbolo \wp (que corresponde a una letra P estilizada, llamada P de Weierstrass).

Definiciones[editar]

La función P de Weierstrass definida sobre una porción del plano complejo utilizando una técnica usual de visualización en la cual el blanco corresponde a un polo, negro a un cero, y la máxima saturación a \left|f(z)\right|=\left|f(x+iy)\right|=1\;. Notar la retícula regular de los polos, y dos retículas que se entrecruzan de ceros.

Se puede definir a la función elíptica de Weierstrass de tres maneras muy similares, cada una de ellas posee ciertas ventajas. Una es como una función de variable compleja z y una retícula \Lambda en el plano complejo. Otra es en término de z y dos números complejos \omega_1 y \omega_2 que definen un par de generadores, o períodos, de la retícula. La tercera es en término de z y de un módulo \tau en el semiplano superior. Esta se relaciona con la definición previa mediante la siguiente expresión \tau = \omega_2/\omega_1, la cual en virtud de la convención usual de pares de períodos se encuentra en el semiplano superior. Utilizando este método, para un z fijo las funciones de Weierstrass resultan ser funciones modulares de \tau.

Considerando los dos períodos la función elíptica de Weierstrass es una función elíptica con períodos \omega_1 y \omega_2 definida como


\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+
\sum_{m^2+n^2 \ne 0}
\left\{
\frac{1}{(z-m\omega_1-n\omega_2)^2}-
\frac{1}{\left(m\omega_1+n\omega_2\right)^2}
\right\}.

Entonces \Lambda=m\omega_1+n\omega_2 son los puntos de la retícula de período, por lo que

\wp(z;\Lambda)=\wp(z;\omega_1,\omega_2)

para todo par de generadores de la retícula define la función de Weierstrass como una función de una variable compleja y una retícula.

Si \tau es un número complejo en el semiplano superior, entonces

\wp(z;\tau) = \wp(z;1,\tau) =\frac{1}{z^2} + \sum_{n^2+m^2 \ne 0}{1 \over (z-n-m\tau)^2} - {1 \over (n+m\tau)^2}.

La suma indicada previamente es homogenea con un grado menos dos, con lo cual se puede definir la función \wp de Weierstrass para todo par de períodos, como

\wp(z;\omega_1,\omega_2) = \wp(z/\omega_1; \omega_2/\omega_1)/\omega_1^2.

Bibliografía[editar]

Referencias[editar]

Enlaces externos[editar]