Filosofía de la matemática

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La filosofía de las matemáticas es un área de la filosofía teórica, que trata de comprender y explicar los requisitos, el objeto, el método y la naturaleza[1] de las matemáticas.

Como área de estudio puede ser aproximada desde dos direcciones: el punto de vista de los filósofos y el de los matemáticos. Desde el punto de vista filosófico, el objetivo principal es dilucidar una variedad de aspectos problemáticos en la relación entre las matemáticas y la filosofía. Desde el punto de vista matemático, el interés principal es proveer al conocimiento matemático de fundaciones firmes. Es importante mantener presente que aunque estos puntos de vistas pueden implicar diferentes esquemas e intereses, no son opuestos, sin más bien complementarios: “Cuando los matemáticos profesionales se ocupan de los fundamentos de su disciplina, se dice que se dedican a la investigación fundamental (o trabajo fundacional o de fundamentos.- ver Metamatemática). Cuando los filósofos profesionales investigan cuestiones filosóficas relativas a las matemáticas, se dice que contribuyen a la filosofía de las matemáticas. Por supuesto, la distinción entre la filosofía de las matemáticas y los fundamentos de las matemáticas es vaga, y a la mayor interacción que haya entre los filósofos y los matemáticos que trabajan en cuestiones relativas a la naturaleza de las matemáticas, mejor.”.[2]

  • De acuerdo a Jeremy Avigad (profesor de ciencias matemáticas y de filosofía en la Universidad Carnegie Mellon[3] ) “El conocimiento matemático ha sido considerado por mucho tiempo como un paradigma del conocimiento humano con verdades que son a la vez necesarias y ciertas, por lo que dar una explicación del conocimiento matemático es una parte importante de la epistemología. Los objetos matemáticos, tales como los números y los conjuntos, son ejemplos arquetípicos de abstracciones, dado que el tratamiento de tales objetos en nuestro discurso es como si fueran independientes del tiempo y el espacio, encontrar un lugar para los objetos de este tipo en un marco más amplio del pensamiento es una tarea central de la ontología, o metafísica. El rigor y la precisión del lenguaje matemático depende del hecho de que está basado en un vocabulario limitado y gramática muy estructurado, y las explicaciones semánticas del discurso matemático a menudo sirven como punto de partida de la filosofía del lenguaje. Aunque el pensamiento matemático ha demostrado un alto grado de estabilidad a través de la historia, su práctica también ha evolucionado con el tiempo, y algunos desarrollos han provocado controversia y debate; clarificar los objetivos básicos de esta práctica y los métodos apropiados es, por lo tanto, una la tarea metodológica y  fundacional importante, situando la filosofía de las matemáticas dentro de la filosofía general de la ciencia.
  • De acuerdo a Bertrand Russell, las matemáticas son un estudio que, cuando se parte de sus porciones más familiares, puede llevarse a cabo en cualquiera de dos direcciones opuestas (una busca la expansión del conocimiento, la otra darle fundamentos. nota del traductor). Pero se debe entender que la distinción es una, no en la materia objeto, pero en el estado de la mente del investigador...(...)... así como necesitamos dos tipos de instrumentos, el telescopio y el microscopio, para la ampliación de nuestras capacidades visuales, igual necesitamos dos tipos de instrumentos para la ampliación de nuestras capacidades lógicas, una para hacernos avanzar a las matemáticas superiores, y el otro que nos lleve hacia atrás, hacia los fundamentos lógicos de las cosas que estamos inclinados a tomar por sentado en las matemáticas. Veremos que mediante el análisis de las nociones matemáticas ordinarias se adquiere una nueva perspectiva, nuevos poderes, y los medios de llegar a nuevos temas matemáticos completos, mediante la adopción de nuevas líneas de avance, siguiendo nuestro viaje hacia atrás.[4]

Como ya se ha sugerido, estas aproximaciones no son conflictivas. En las palabras de Imre Lakatos: «Al discutir los esfuerzos modernos para establecer las fundaciones para el conocimiento matemático uno tiende a olvidarse que esos son solo un capítulo en el gran esfuerzo para superar el escepticismo a través de establecer las fundaciones para el conocimiento en general. El objeto de mi contribución es mostrar la filosofía matemática moderna como profundamente empotrada en la epistemología general y como solo siendo entendible en ese contexto.» (énfasis de Lakatos.[5] )

Dada la vastedad y complejidad del tema, lo que sigue ofrece una visión muy superficial.

Introducción[editar]

Desde la antigüedad la filosofía ha tenido interés en, por lo menos, ciertos aspectos de la matemática.[6] En las palabras de Miguel de Guzmán: "Pero hay otros aspectos interesantes de la matemática que atraen de modo natural al filósofo. La dinámica interna del pensamiento matemático, la lógica de su estructura, simple, tersa, sobria, clara, hacen de ella un modelo de reflexión fiable que suscita el consenso de todos. Los filósofos interesados en aclarar los misterios del conocimiento humano han visto en el pensamiento matemático un campo ideal de trabajo donde poner a prueba sus hipótesis y teorías.".[7] Mario Bunge va tan lejos como a sugerir que las matemáticas son no solo el fundamento no sólo del quehacer científico sino también filosófico.[8]

Por mucho de ese tiempo la opinión general era la que Carl Friedrich Gauss resumió: «La matemática es la reina de las ciencias y la aritmética es la reina de las matemáticas. Ella a menudo se digna a prestar un servicio a la astronomía y a otras ciencias naturales, pero en todas las relaciones, tiene derecho a la primera fila».[9] Esta preeminencia se debía a una percepción que, últimamente, emana de Platón: "En las matemáticas se halla el origen y fundamento de la teoría platónica de las formas o ideas. En esta la idealización de los entes matemáticos se transforma en la idealización de los entes físicos y psíquicos. La verdad matemática, por su invariabilidad en el tiempo, era el modelo a seguir en todo conocimiento intelectual. El método deductivo, que partiendo de axiomas y definiciónes llegaba a la demostración de teoremas, era el modelo prestigioso de razonamiento para todo saber. En el diálogo "Menón" Sócrates,  a través de preguntas y respuestas, hace que un esclavo alcance por su propio razonamiento una verdad matemática; así, de una manera popular, expone Platón que las matemáticas están en el alma humana, ya que en esta se halla presente el logos que gobierna el mundo material mediante las proporciones aritméticas y geométricas. Sólo se requiere la introspección para volvernos conscientes de ese saber interno.".[10]

Esa posición es generalmente conocida como Realismo; platonismo o Realismo platónico y "de manera muy esquemática, puede sintetizarse en la creencia de que los objetos matemáticos son reales y su existencia es un hecho objetivo e independiente de nuestro conocimiento de los mismos.... existen fuera del espacio y del tiempo de la experiencia física y cualquier pregunta significativa sobre ellos tiene una respuesta definida. Así el matemático es, en este sentido, como un científico empírico que no puede inventar ni construir sino solo descubrir algo que ya existe.[11]

Sin embargo, hacia fines del siglo XIX esta situación comenzó a cambiar, proceso que eventualmente culminó, a fines del siglo XIX y comienzo del XX, en la llamada crisis de los fundamentos:[12] [13] [14] [15] [16] [17] "La imagen tradicional de las matemáticas (formal e infalible) fue cuestionada a raíz de la llamada "crisis de los fundamentos de las matemáticas", que sucedió en el siglo XIX. Dicha "crisis" se originó principalmente por dos descubrimientos: primero el de las geometrías no euclidianas y, segundo, el de la teoría de los conjuntos."[18]

Esa situación ha sido resumida de la siguiente manera[19]

"Hasta bien entrado el siglo XIX, la Geometría era universalmente considerada la rama más firme del conocimiento.... La Geometría era, simplemente, el estudio de las propiedades del espacio. Estas se manifestaban como verdades objetivas, universalmente válidas para la mente humana.
Durante el siglo XIX sucedieron “varios desastres que iban a cambiar completamente esta situación. El primero fue el descubrimiento de Geometrías no euclídeas, al que inmediatamente siguió otro desastre mayor: el desarrollo del análisis por caminos contrarios a la intuición geométrica (curvas que llenan el espacio, funciones continuas no diferenciables, etc) lo que puso de manifiesto la gran vulnerabilidad del único fundamento que hasta entonces tenían las Matemáticas: la intuición geométrica. Esto era una auténtica catástrofe puesto que en algún sentido implicaba la pérdida de la certeza, no solo en la Matemática sino en todo el conocimiento humano.
Se pensó entonces buscar otra “base segura” para fundamentar las Matemáticas, y así Dedekind y Weierstrass mostraron como era posible construir el análisis -el continuo- a partir de la Aritmética. Parecía que todo volvía a estar en orden, pues nadie dudaba de la certeza proporcionada por nuestra intuición de contar y así los números enteros serían la nueva base segura para todo el edificio matemático... (ver Programa de Hilbert).
Pero el intento de fundamentar rigurosamente la Matemática iba a ser llevado un paso más lejos por Frege, quien comenzó un ambicioso programa para basar las Matemáticas en la Lógica -a través de la Aritmética. Este fue el punto de partida de la escuela logicista que más tarde seria continuada por Russell y Whitehead. La idea logicista consistía en demostrar que la Matemática clásica era parte de la lógica, de modo que una vez culminado su programa podría asegurarse que la Matemática estaba libre de contradicción al menos en la misma medida que la propia lógica.
Sin embargo, ya en ese momento se habían hecho unos descubrimientos que iban a sacudir completamente este optimismo dejando de nuevo a la Matemática sin fundamentos seguros. En efecto, la construcción del continuo a partir de la Aritmética se basaba en la Teoría de Conjuntos de Cantor (ver Hipótesis del continuo), que también había sido utilizada por Frege en sus fundamentacion de la Aritmética. Pero la teoría de Cantor, y en particular su hipótesis básica sobre la existencia de conjuntos encerrada en su definición: “un conjunto es cualquier colección de objetos distintos de nuestra intuición o nuestro pensamiento”, que puede ser traducida por “cualquier condición determina un conjunto”, iba a revelarse inconsistente."

Esa crisis dio origen a varias tentativas de resolución, lo que, a su vez, dio origen a tres corrientes principales: las escuelas intuicionista, logicista y formalista[20] (esa es la visión general o común, algunos incluyen otras escuelas, tales como el fenomenalismo de Husserl[21] ). Argumentablemente esas tentativas fueron infructuosas[22] lo que dio origen a otras escuelas, tanto derivadas de las anteriores[23] como de otras percepciones básicas -por ejemplo, del Empirismo. Sin embargo, y argumentablemente, la situación todavía no se ha resuelto del todo[24] [25] [26]

Problemas[editar]

Al respecto de todo lo anterior hay algunas interrogantes fundamentales y sistemáticas tales como:

  1. el modo de ser de los objetos matemáticos: acaso estos existen "realmente" e independientemente de cualquier empleo específico, y si es así, ¿en qué sentido? Y ¿qué significa referirse a un objeto matemático? ¿Cuál es el carácter de los teoremas matemáticos? ¿Cuál es la relación entre la lógica y las matemáticas? - Aquí se trata de cuestiones ontológicas.
  2. el origen del conocimiento matemático: ¿Cuáles son la fuente y la esencia de la verdad matemática? ¿Cuáles son las condiciones de la ciencia matemática? ¿Cuáles son, en lo fundamental, sus métodos de investigación? ¿Qué papel, en relación a lo anterior, la naturaleza del ser humano? - Aquí se trata de cuestiones epistemológica.
  3. la relación entre las matemáticas y la realidad: ¿Cuál es la relación entre el mundo abstracto de las matemáticas y el universo material? Tienen las matemáticas sus raíces en la experiencia, y si es así, ¿cómo? ¿Cómo es que las matemáticas ”calzan tan bien con los objetos de la realidad" (Albert Einstein[27] )? ¿De qué manera los conceptos tales como número, punto, infinito etc., adquieren un significado que trasciende el ámbito estrictamente matemático?

El punto de partida es casi siempre la concepción de que las proposiciones matemáticas son ciertas por principio, de manera atemporal y exacta y que su veracidad no depende ni de evidencias empíricas ni de puntos de vista personales. La tarea consiste tanto en determinar las condiciones de la posibilidad de adquirir ese conocimiento, como en cuestionar críticamente este punto de partida.

Corrientes[editar]

Platonismo[editar]

El realismo[28] [29] [30] es, quizás, la posición más ampliamente difundida entre los matemáticos.[31] En las palabras de P Maddy: "El realismo, por tanto, es el punto de vista que sostiene que la matemática es la ciencia de los números, conjuntos, funciónes, etc., tal y como la física es el estudio de los objetos físicos ordinarios, cuerpos astronómicos y partículas subatómicas entre otros. Esto es, la matemática trata acerca de esos objetos, y es el modo en que tales objetos son lo que hace a los enunciados de la matemática verdaderos o falsos.".[32] En otras palabras, tanto los "objetos matemáticos" (números, figuras geométricas, etc) como las leyes matemáticas no se inventan, sino que se descubren. Con esto se explica al carácter objetivo, interpersonal, de las matemáticas. Este realismo ontológico es incompatible con todas las variedades de la filosofía materialista. Es representado, entre otros matemáticos, por Kurt Gödel,[33] [34] Eugene Paul Wigner y Paul Erdös. Entre los filósofos que han adoptado la posición se cuentan Willard Van Orman Quine; Michael Dummett[35] , Mark Steiner.[36]

Alrededor de los 1900 tuvo mucha influencia en esa posición el El argumento de Frege,[37] que se puede resumir así: "Términos singulares que se refieren a números naturales aparecen en enunciados verdaderos simples. Solo es posible para los enunciados simples con términos singulares como componentes ser verdaderos si los objetos a los que se refieren los términos singulares existen. Por lo tanto: los números naturales existen. Pero, si los números naturales existen, son objetos abstractos que son independientes de todas las actividades racionales. Por lo tanto: los números naturales son objetos abstractos que existen independientes de todas las actividades racionales, es decir, el objeto aritmético del platonismo es verdad."

La forma clásica del realismo es el platonismo, que ha sido definido como " cualquiera explicación metafísica de las matemáticas que implica que las entidades matemáticas existen, que son abstractos, y que son independientes de todas nuestras actividades racionales.",[38] es decir, que los objetos y teoremas matemáticos existen en forma aislada del mundo material e independientemente del espacio y del tiempo, junto con otras ideas tales como las de "lo bueno", "lo bello", o "lo divino". El término ‘platonismo’ fue introducido al área, en1934, por el lógico matemático Paul Bernays. La intención era designar un modo de razonar que es característico sobre todo del análisis matemático y la teoría de conjuntos, aunque también del álgebra moderna y la topología: los objetos de la teoría se conciben como elementos de una totalidad o conjunto, que se considera dada o independiente del sujeto pensante (es decir, del matemático). Una consecuencia de dicho modo de pensar es que para una propiedad cualquiera (expresable en la teoría) puede decirse que o bien la poseen todos los elementos del conjunto, o bien hay uno que no la posee."[39]

El principal problema del platonismo en la filosofía de las matemáticas es la pregunta, ¿cómo podemos nosotros, como seres finitos, reconocer los objetos matemáticos y las verdades si éstas se encuentran en las "esferas celestiales de las ideas". De acuerdo a Gödel, esto se logra mediante la intuición matemática que, de manera similar a un órgano sensorial, hace que los seres humanos percibamos partes de ese otro mundo. Tales intuiciones racionales también son defendidas por la mayor parte de los clásicos del racionalismo, así como, en debates más recientes acerca de la justificación y el conocimiento a priori, entre otros por Laurence Bonjour.[40] Sin embargo, el tratamiento más sofisticado de este asunto (por Paul Benacerraf en su artículo “Mathematical Truth,” de 1973[41] ), sugiere que el problema es más profundo: "nuestras mejores teorías epistémicas parecen excluir cualquier conocimiento de los objetos matemáticos.".[42] (Esto es generalmente conocido como el Dilema de Benacerraf[43] [44] dado que es generalmente interpretado como estableciendo debemos abandonar nuestras teorías epistemologías o la certeza matemática.[45] [46] [47]

En el presente los partidarios del realismo/platonismo generalmente citan el siguiente argumento a favor de sus posiciones, argumento que busca mostrar que las teorías epistémicas son (deben ser) consistentes con la aproximación realista:

El Argumento de indispensabilidad de Quine y Putnam, que, básicamente sugiere que debemos estar "ontológicamente comprometida con todas aquellas entidades que sean indispensables para nuestras mejores teorías científicas." (es decir, debemos afirmar como válidas e independientes todos aquellos elementos básicos del análisis que necesitamos en nuestros razonamientos, alternativamente, somos intelectualmente deshonestos). "Los objetos y/o estructuras matemáticos son indispensables para nuestras mejores teorías científicas. Por lo tanto, debemos reconocer la existencia de esos objetos o estructuras."

Formalismo[editar]

El formalismo matemático entiende las matemáticas como un juego (en el sentido de Wittgenstein[48] ) basado en un cierto conjunto de reglas para manipular cadenas de caracteres: "..el programa del formalismo matemático consiste en construir la Matemática como un sistema lógico-formal puro, cuya condición fundamental es la ausencia de contradicción, prescindiendo de todo tipo de contenido; se trata, pues, de un sistema formal vacío. Este sistema formal estaría integrado por uno o más conjuntos de elementos fundamentales, por relaciones definidas entre los elementos de estos conjuntos y por proposiciones reguladoras de estas relaciones (proposiciones que comprenden los axiomas y las demás proposiciones de ellos deducidas: los teoremas).[49] Por ejemplo, en el juego de geometría euclidiana se obtiene el teorema de Pitágoras combinando ciertas cadenas (los axiomas) según determinadas reglas (las del razonamiento lógico).[50] [51]

David Hilbert es generalmente considerado fundador del formalismo moderno.[52] Su interés era la construcción axiomática consistente y completa de la totalidad de las matemáticas,[53] seleccionando como punto de partida los números naturales y asumiendo que mediante el uso de axiomas se obvía la necesidad de definir los objetos básicos (op. cit) con el fin de lograr un sistema completo y consistente (ver Programa de Hilbert).

En esta visión los enunciados matemáticos pierden el carácter de verdades; dejan de ser, en última instancia, proposiciones "sobre algo". Lo que importa son las relaciones que se establecen entre ellos: "Hilbert sostiene que la verdadera importancia en la construcción de los saberes matemáticos no es el resultado numérico, sino la ley de cómo estructurar las relaciones entre los objetos matemáticos.... Las reglas que enlazan funcionalmente los objetos con su sistema de referencia formarán parte de un Sistema Formalizado Matemático; en donde, se entiende como formalización a un conjunto de leyes descubiertas en el seno de su misma estructura, la que mantiene su consistencia en las demostraciones."[54]

Otro matemático de nota que fue inspirado por el formalismo fue Haskell Curry, generalmente considerado el fundador de la lógica combinatoria.

A pesar que esta propuesta fue de corta duración, debido al teorema de incompletitud de Gödel, que demostró que cualquier sistema de axiomas que incluya los números naturales es ya sea incompleto o contradictorio, llegó, de facto, a constituir la posición más aceptada entre los matemáticos hasta el último cuarto del siglo XX: "Los años setenta vieron decaer la tendencia formalista, representada por el grupo Bourbaki, seudónimo de varias generaciones de matemáticos franceses,"[55]

Deductivismo[editar]

En el deductivismo -una variante usual del formalismo- se considera que, en el ejemplo del teorema de Pitágoras, la “verdad” de una proposición matemática es sólo correcta en relación a: Si a las cadenas se les asignan significados, de tal manera que los axiomas y reglas de inferencia sean verdaderas, entonces se obtienen ‘conclusiones ciertas’, tales como el teorema de Pitágoras. En este sentido, el formalismo no sigue siendo obligatoriamente un juego simbólico sin sentido. El matemático puede confiar, en cambio, que existe una interpretación de las cadenas de caracteres sugerida por ejemplo por la física o por otras ciencias naturales, tal que las reglas conduzcan a “afirmaciones verdaderas”. Por lo tanto un matemático deductivista puede mantenerse al margen tanto de la responsabilidad por la interpretación como de las dificultades ontológicas de los filósofos.

El deductivismo fue introducido formalmente por Hilary Putnam[56] "como una respuesta a algunos problemas con el logicismo de Russell en su Principia".[57] Putnam propone considerar las matemáticas como el estudio de las consecuencias de los axiomas, usando teoría de modelos. En consecuencia, Putnam interpreta las proposiciones matemáticas como refiriendose a un posible modelo para esas proposiciones. A diferencia del logicismo estricto, el deductivismo basa y transforma la matemática en una lógica en un sentido mucho más amplio que el sentido logicista. La lógica deductivista incluye, por ejemplo, la teoría de conjuntos necesaria para estudiar las consecuencias que siguen de axiomas. (R. Marcuss. op. cit).

Los deductivistas requieren que toda y cada prueba matemática sea una deducción. Ellos reconocen que no todas tales pruebas son estrictamente válidas (ver Validez (epistemología) y Validez (lógica)), pero consideran que toda prueba informal debe ser completable como deducción a fin de ser considerada válida[58]

Quizás sea necesario notar que "deductivismo" es un concepto amplio, consecuentemente, el logicismo seria solo una versión (usando una concepción más restrictiva de la lógica matemática) del deductivismo (Hossack, op. cit).

Intuicionismo[editar]

El intuicionismo matemático[59] rechaza tanto la sugerencia logicista como la formalista, proponiendo que el conocimiento matemático se basa en la aprehensión -que antecede cualquier lenguaje o lógica- de algunos conceptos matemáticos básicos.[60] [61] Este intuicionismo se origina en la propuesta de L. E. J. Brouwer[62] que el saber matemático se basa en la intuición primordial[63] [64] de los números naturales ( 1, 2, 3... ). Cada uno de esos números puede, a partir de la intuición básica del 1, ser "construido" agregando 1 al anterior. (Nótese que esto introduce un elemento temporal - ver D. Pareja. op. ci).

A partir de lo anterior, el resto de la matemática puede (y debe) ser construida de forma explícita y rigurosa, lo que requiere un método claro y preciso[65] - Solo entidades cuya existencia (positiva o negativa) haya sido demostrada de tal manera, o por medio de tal método, tienen validez matemática.[66] Parafraseando el dicho platonista, se podría decir que, desde el punto de vista intuicionista, las verdades matemáticas no se descubren, se crean.[67]

Entre otras consecuencias de lo anterior se encuentra la restricción del principio del tercero excluido:[68] [69] saber que una proposición es falsa implica, para los intuicionistas, poder demostrar esa falsedad.[70] [71] (ver, por ejemplo, Lógica intuicionista). Sigue que, en un momento dado (por ejemplo, el presente) es perfectamente posible que haya proposiciones acerca de las cuales no tenemos certeza acerca de si son correctas o no. (nótese que esto introduce, nuevamente, un elemento temporal en la "verdad" matemática). (Lo anterior no es un rechazo absoluto del principio. Los intuicionistas lo utilizan en situaciones específicas -por ejemplo, en el caso de conjuntos bien definidos y finitos. Ver Aritmética de Heyting)[72] )

Otras diferencias con lo que se puede considerar matemáticas clásicas se encuentran en la concepción del infinito y la del continuo. Para los intuicionistas un (cualquier) ente es valido si y solo si puede ser construido por medio de un procedimiento especificado y con un número finito de pasos o operaciones (este procedimiento puede ser un algoritmo o algún otro que siga una regla: por ejemplo: arrojar un dado veinte mil veces a fin de generar cualquier número). Pero cual procedimiento específico y finito puede generar el infinito? Cualquier procedimiento que escojamos solo nos dará algún número concreto. Consecuentemente, el infinito intuicionista es solo potencial, a diferencia del "infinito oficial" que lo concibe como "una totalidad completa y acabada.".[73] Si bien esta diferencia es más bien metafísica (op. cit), argumentablemente sin consecuencias mayores para la práctica matemática, es la introducción a la diferencia sobre la concepción del continuo, que si tiene tales consecuencias. (op. cit, esp p 108).

El concepto intuicionista del continuo[74] rechaza la concepción axiomática clásica (de Cantor y Zermelo, etc ver Hipótesis del continuo, etc), basada en la teoría de conjuntos y sugiere utilizar una especie de "principio de elección" (choice principles[75] que Brouwer llama "secuencias de elecciones libres"), basado en la intuición que, entre dos puntos (o números) cualquiera, un matemático puede elegir libremente otro punto o número, y así indefinidamente: “El continuo lineal no puede ser agotado por la interpolación de nuevas unidades. Y no puede por lo tanto ser pensado como una mera colección de unidades.”.[76] (al respecto de todo esto, ver: "El Error de Cantor"[77] ).

La introducción de secuencias de elecciones tiene varias consecuencias[78] difíciles de aceptar para la matemática no intuicionista.[79] Como ejemplos, la demostración intuicionista del teorema de la barra (bar theorema[80] ) y el teorema del abanico (fan theoreme[81] ).

Aparte de Arend Heyting, otros matemáticos y lógicos de nota influidos por esta visión incluyen: Hermann Weyl, quien promovió una visión constructivista de la matemáticas. La aplicación del intuicionismo a la topología por Alfred Tarski; los trabajos matemáticos de Andréi Kolmogórov y los de Andréi Márkov y los desarrollos de una lógica intuicionista por Saul Kripke.[82]

Entre los filósofos que continúan esta tradición encontramos Michael Dummett.[83]

Constructivismo[editar]

A partir de las sugerencias de Brouwer y Markov, Erret Bishop postulo el Constructivismo.[84] Modificando algunas percepciones de los autores mencionados de tal manera que la propuesta constructivista resulta más restrictiva que las sugerencias de Brouwer y Markov pero, al mismo tiempo, logrando que todos sus teoremas resulten compatibles tanto con esas sugerencias como con las de la matemática clásica, cosa que no ocurre con las otras dos.[85]

Bishop logra esta flexibilidad a través de no definir lo que llama "rutinas finitas" (algoritmos) que constituyen el proceso de demostración. Si bien esto parece introducir una cierta falta de precisión, fuerza a quienes practican esta aproximación a utilizar estrictamente la lógica intuicionista. Parece ser que utilizar tal lógica equivale a practicar matemática algorítmica formal. Si eso fuera el caso, la aproximación intuicionista podría ser implementada en relación a cualquier objeto matemático, no solo esa clase especial de "objetos constructivos"[86]

Finitismo[editar]

El finitismo es una forma extrema del constructivismo, de acuerdo a la cual un objeto matemático no existe a menos que sea construido partiendo de los números naturales en un número de pasos finitos.

Estructuralismo[editar]

El estructuralismo considera las matemáticas principalmente como una ciencia que se ocupa de las estructuras generales, es decir, las relaciones de los elementos dentro de un sistema. "El estructuralismo matemático es similar, en algunos aspectos, al punto de vista funcionalista en, por ejemplo, la filosofía de la mente. Una definición funcional es, en efecto, estructural, ya que, también se centra en las relaciones que los elementos definidos tienen el uno al otro. La diferencia es que las estructuras matemáticas son más abstractos, y autónomas, en el sentido de que no hay restricciones sobre el tipo de cosas que pueden ejemplificar (véase Shapiro [1997, capítulo 3, § 6])."[87]

Para ilustrar lo anterior, considérese un "sistema ejemplo” - tal como la administración de un club deportivo.[88] Los distintos cargos (presidente, auditor, tesorero, etc.) son independientes de las personas que asumen esas tareas. Considerando sólo el esquema de los cargos (y por tanto "omitiendo" las personas reales que trabajan en ellos), se obtiene la estructura general de una asociación. El club en sí, con las personas que han tomado posesión de los cargos, ejemplifica esta estructura.

Del mismo modo, cualquier sistema cuyos elementos tengan un sucesor único ejemplifica la estructura de los números naturales. Lo mismo se aplica a otros objetos matemáticos. Puesto que el estructuralismo no considera los objetos, tales como números, de manera separada de su totalidad o estructura, sino que más bien los considera como "espacios en una estructura", esquiva la cuestión de la existencia de los objetos matemáticos y los explica como errores categoriales. Así, por ejemplo, el (número) dos, en tanto número natural, ya no puede ser considerado en forma separada de la estructura de los números naturales, sino como el identificador del "segundo lugar en la estructura de los números naturales": no tiene propiedades internas ni una estructura propia. En consecuencia, existen tanto variantes del estructuralismo que asumen la existencia de los objetos matemáticos, como otras que rechazan su existencia[89]

Los problemas con esta corriente surgen principalmente de la cuestión de las propiedades y el ser de las estructuras.[90] Al igual que en el problema de los universales es aparente que “las estructuras” son algo que puede aplicarse a muchos sistemas simultáneamente. Por ejemplo, la estructura de un equipo de fútbol es ciertamente ejemplificado por miles de equipos. Esto plantea la cuestión de si y cómo las estructuras existen, si acaso existen independientes de los sistemas. Otras cuestiones pendientes están relacionadas con el acceso a las estructuras y la de ¿cómo podemos aprender acerca de ellas?

Entre los representantes actuales del estructuralismo se cuentan Stewart Shapiro;[91] Michael Resnik;[92] Geoffrey Hellman[93] y el ya mencionado Paul Benacerraf.

Empirismo[editar]

El empirismo matemático[94] puede trazarse a la obra de John Stuart Mill,[95] para quien los conceptos matemáticos proceden del mundo físico y las verdades de la matemática son verdades acerca del mundo físico, aunque de un carácter más general. Las verdades matemáticas serían las verdades más generales de todas (Dummett 1998, pp. 125-126).

A pesar que la sugerencia de Mill no despertó gran interés entre matemáticos (P Kitcher: "el problema que muchas de sus formulaciones son imprecisas (casi invitando las bien conocidas ironías de Frege) y, en adición, Mill solo considera las más rudimentarias partes de la matemáticas"[96] ), la idea básica fue eventualmente retomada por dos autores: Stephan Körner[97] y László Kalmár.[98] Para Körner, "las teorías científicas integradas en la matemática funcionan y están justificadas, junto con su marco de trabajo matemático como constituyentes sincategoremáticos[99] de las proposiciones empíricas ". Para Kalmar "los axiomas de cualquier rama interesante de las matemáticas fueron originalmente extraídos, más o menos directamente, de los hechos empíricos, y las reglas de inferencia utilizadas en ella originalmente manifestaron su validez universal en nuestra práctica del pensamiento; III) la consistencia de la mayoría de nuestros sistemas formales es un hecho empírico, (y) aún cuando se ha demostrado, la aceptabilidad de los métodos metamatemáticos utilizados en la prueba (por ejemplo inducción transfinita hasta cierto ordinal constructivo) es de nuevo un hecho empírico.".[100]

Esta visión ha sido expandida por, entre otros, Philip Kitcher, quien busca sistematizarla;[101] Carl E. Behrens, quien sugiere que "Al rehabilitar el empirismo de John Stuart Mill y combinarlo con el conocimiento cada vez mayor de la naturaleza de la mente humana, podemos escapar del indefinible universo platónico de la conciencia inmaterial y abandonar la vana búsqueda por la certidumbre que ha plagado la filosofía desde los tiempos de los griegos.[102]

Cuasi-empirismo[editar]

El término cuasi-empirismo fue introducido por Imre Lakatos[103] a fin de enfatizar un punto crucial de su sugerencia: "Una teoría Euclidiana puede ser proclamada verdadera. Una teoría cuasi-empírica puede —a lo más— ser bien corroborada, pero es siempre conjetural. Adicionalmente, en una teoría Euclidiana los postulados verdaderos básicos en "la cumbre" del sistema deductivo (generalmente llamados 'axiomas') demuestran, por así decirlo, el resto del sistema; en una teoría cuasi-empírica los postulados básicos (verdaderos) son explicados por el resto del sistema." (op cit, sección 2).

"El cuasi-empirismo postula que para entender y explicar las matemáticas no basta con analizar su estructura lógica ni su lenguaje sino que hay que estudiar su práctica real, la manera en que efectivamente las aplican los matemáticos, las enseñan los profesores y las aprenden los estudiantes, su historia, las revoluciones que ocurren en ellas, los paradigmas y los programas que dominan, las comunidades de matemáticos, el tipo de retórica que se emplea en ellas y el papel que juega el conocimiento matemático en las distintas sociedades y culturas.."[104]

El cuasi empirismo de Lakatos: Lakatos plantea que la supuesta necesidad lógica (o verdad a priori) de las matemáticas deriva de que nos hemos olvidado, no conocemos, o no valoramos adecuadamente el proceso de pruebas y refutaciones informales, siempre falibles, por medio del cual se llega a las pruebas formales que después dan lugar a las axiomatizaciones. Lakatos propone que: 1) las pruebas formales son falseables por medio de las pruebas informales; 2) el proceder de las matemáticas no es axiomático, como plantean los formalistas, sino basado en una sucesión de pruebas y refutaciones que sólo llegan a resultados falibles; 3) el intento de proveer de fundamentos a las matemáticas conlleva un retroceso al infinito; 4) la historia de las matemáticas debe ser estudiada no a través de teorías aisladas sino de series de teorías o, mejor aún, de programas de investigación que incluyen un núcleo firme no falseable y un cinturón protector de hipótesis auxiliares que sí son falseables, pero que son modificables;10 5) debemos preferir no el programa matemático que esté completamente axiomatizado sino el que sea progresivo, esto es, el que permita descubrir hechos nuevos e inesperados.[105]

El cuasi empirismo de Putman: Hilary Putnam parte de las tesis quineanas acerca del holismo de las teorías y la naturalización de la epistemología, pero también, como su maestro Reichenbach, del impacto de la física moderna en nuestra concepción de la ciencia y de la realidad. En las matemáticas, según Putnam, hay un juego entre postulación, pruebas informales o cuasi-empíricas y revolución conceptual. Putnam reconoce que las matemáticas no son ciencias experimentales y que son más a priori que, por ejemplo, la física, sin embargo señala que la distinción entre lo a priori y lo a posteriori es más bien relativa: que algo sea a priori significa, simplemente, que juega un papel fundamental en nuestra concepción del mundo o en nuestra forma de vida y que, por tanto, no estamos dispuestos a renunciar a ello. Concretamente, la teoría de conjuntos es indispensable para la física, por ello, las entidades sobre las cuales cuantifica, a saber, los conjuntos, deben ser considerados como reales, pues no se puede aceptar el conocimiento que proporciona la física sin aceptar dichas entidades o, mejor dicho, al aceptar el conocimiento de la física, ya se ha aceptado, implícitamente, la teoría de conjuntos. Así, las matemáticas comparten el contenido empírico con las teorías físicas de las que forman parte y se modifican junto con ellas.

Véase también[editar]

Notas y referencias[editar]

  1. Natura es la traducción latina de la palabra griega physis (φύσις), que en su significado original hacía referencia a la forma innata en la que crecen espontáneamente plantas y animales. (ver D. Harper Physical). En Idioma alemán el término "naturaleza" proviene de naturist, que significa "el curso de los animales, carácter natural."(ver D. Harper: Nature
  2. Horsten, Leon, Philosophy of Mathematics, The Stanford Encyclopedia of Philosophy (Summer 2012 Edition), Edward N. Zalta (ed.)
  3. Jeremy Avigad
  4. Bertrand Russell: Introduction to Mathematical Philosophy chap 1
  5. I Lakatos: “Infinite regress and foundations of mathematics” en Mathematics, science and epistemology Cambridge U Press, 1978, p. 4
  6. Por ejemplo: Iván Pedro Guevara V (2008): "La filosofía ha considerado siempre la matemática como uno de los objetos principales de sus investigaciones,.. " en LA FILOSOFIA DE LA MATEMATICA: LA RAZON DE SER DEL NUMERO.- Diego Fusaro: "Siempre hay una relación inseparable entre la matemática y la filosofía.." en IL RAPPORTO FILOSOFIA - MATEMATICA (en italiano en el original)
  7. M de Guzmán: Filosofía y matemáticas
  8. Adianez Fernández Bermúdez: Una visión de la ciencia y su relación con la ética, en Mario Bunge
  9. R Gauss: frases célebres de o sobre Carl Friedrich Gauss.
  10. «El sentido de las matemáticas en la filosofía de Platón»
  11. José Luis Gómez Pardo: “Observaciones sobre la naturaleza de la Matemática”, en Luis Puelles et al (Wenceslao J. González edt) (1988): Aspectos Metodológicos de la Investigación Científica: Un Enfoque Multidisciplinar p 127
  12. JAVIER DE LORENZO: "La matemática: de sus fundamentos y crisis"- Tecnos, Madrid
  13. SIGLO XX: CRISIS EN LOS FUNDAMENTOS
  14. JOSÉ M. FERREIRÓS: The Crisis in the Foundations of Mathematics (en Princeton Companion to Mathematics Proof)
  15. A Timeline for the Foundational Crisis and the Vienna Circle
  16. Herman Weyl On the New Foundational Crisis in Mathematics
  17. Mario O. González (1950): [http://www.filosofia.org/hem/dep/rcf/n06p025.htm La crisis actual de los fundamentos de la Matemática]
  18. Eduardo Harada O (2005): El cuasi empirismo en la filosofía de las matemáticas
  19. José Luis Gómez Pardo: “Observaciones sobre la naturaleza de la Matemática”, en Luis Puelles et al (Wenceslao J. González edt) (1988): Aspectos Metodológicos de la Investigación Científica: Un Enfoque Multidisciplinar p 125- 156:
  20. Encyclopedia Britanica: [1]
  21. Por ejemplo: Ulrich Majer (2004): Husserl Between Frege’s Logicism And Hilbert’s Formalism
  22. Ernst Snapper (1979); The Three Crisis in Mathematics: Logicism, formalism and Intuitionism
  23. Lindström, S.; Palmgren, E.; Segerberg, K.; Stoltenberg-Hansen, V. (Eds.) (2009): Logicism, Intuitionism, and Formalism: What Has Become of Them?
  24. Ferran Mir Sabaté (2006): Las discusiones posteriores sobre la filosofía matemática (la metamatemática) ilustrarán las distintas concepciones de la disciplina. Durante los años 20s se desarrollará un profundo debate sobre las bases de las matemáticas que, a pesar de su cierre aparente, sigue vigente en nuestros días. en LA POLEMICA INTUICIONISMO FORMALISMO EN LOS AÑOS 20. Cuaderno de Materiales. Num. 23 (2011). ISSN 1139-4382. Pàginas 557-574.
  25. Por ejemplo: Edward Nelson (2006): Warning Signs of a Possible Collapse of Contemporary Mathematics
  26. Por ejemplo: Alex Levine: Conjoining Mathematical Empiricism with Mathematical Realism: Maddy's Account of Set Perception Revisited en Synthese.- Vol. 145, No. 3 (Jul., 2005), pp. 425-448
  27. Véase: Guillermo Mattei Irrazonable eficacia de la matemática - ver también Eugene Paul Wigner: The Unreasonable Effectiveness of Mathematics in the Natural Sciences
  28. Luke Jerzykiewicz (2007) "La gran mayoría de los realistas de hoy en día, incluyendo el propio Stewart Shapiro, sostienen que las entidades matemáticas (o estructuras) son abstractas y a-causal. 'Realismo', de hecho, viene a ser casi sinónimo de 'platonismo'. en Platonist epistemology and cognition p 1
  29. Para una visión general de esta posición, ver Penelope Maddy (1992) Realism in Mathematics
  30. Haim Gaifman: On Ontology and Realism in Mathematics
  31. De acuerdo a Davis y Hersh (ver la Experiencia matemática “el matemático profesional típico es un platonista durante la semana y un formalista en el Domingo” (ver Realismo platónico), lo que generalmente se interpreta como significando que la mayoría de los matemático se comportan como si aceptaran que los objetos matemáticos y sus relaciones fueran objetivos, independientes de nuestra voluntad o subjetividad, pero si se les demanda una justificación de su posición, adoptan el formalismo (ver más abajo)
  32. P Maddy, citada por Luis Miguel Ángel Cano P (2003) en Frege y la nueva lógica.
  33. K Gödel: “Los conceptos tienen una existencia objetiva” en My philosophical viewpoint
  34. Guillerma Díaz Muñoz (2000): Aproximación del realismo matemático de Gödel al realismo constructivo de Zubiri
  35. Michael Dummett (1998): La existencia de los objetos matemáticos. Teorema, XVII (2). pp. 5-24.
  36. Mark Steiner (1983): "Mi intención es argumentar a favor de la realidad de ciertas entidades matemáticas" en Mathematical Realism Noûs Vol. 17, No. 3 (Sep., 1983), pp. 363-385
  37. The Fregean Argument for Object Platonism
  38. Internet Enciclopedia of Philosophy: Mathematical Platonism
  39. José Ferreirós (1999) Matemáticas y platonismo(s)
  40. L Bonjour: In Defense of Pure Reason. (London: Cambridge University Press, 1998) Entrada en wikipedia inglesa acerca de Bonjour
  41. P Benacerraf: The Truth
  42. IEP; The Indispensability Argument in the Philosophy of Mathematics
  43. W. D. Hart (1991): Benacerraf's Dilemma
  44. Bob Hale and Crispin Wright Benacerraf's Dilemma Revisited
  45. Eleonora Cresto (2002): "Benacerraf nos ofrece allí un dilema, moldeado sobre la dicotomía entre platonismo y constructivismo: el primero nos permite entender como es que los enunciados matemáticos son verdaderos, pero no como es que los conocemos, el segundo explica el conocimiento matemático, pero no la verdad." en Comentarios a "La filosofía de la matemática del segundo Wittgenstein: El problema de la objetividad de la prueba matemática
  46. Rui Vieira (2010): "Sin embargo, en un importante artículo, "Mathematical Truth", en el Journal of Philosophy, Vol. 70 (1973), el filósofo Paul Benacerraf argumentó que las explicaciones anti-platónicas de las matemáticas deprivan los enunciados matemáticos de su verdad objetiva en el sentido cotidiano popular, es decir, de la idea de que las verdades matemáticas son verdaderas piense alguien en ellas o no. La verdad objetiva es una propiedad de las matemáticas que para la mayoría de nosotros es obvia, pero explicaciones anti-platónicas hacen las matemáticas subjetivas (aunque el argumento de Benacerraf se dirige al convencionalismo y al formalismo, no creo que las tentativas del intuicionismo se libren nada mejor". en Mathematical Knowledge: A Dilemma.
  47. GREGORY LAVERS (2009): "El sentido común respecto a la verdad y la forma sintáctica de los enunciados matemáticos nos lleva a concluir que los enunciados matemáticos se refieren a objetos abstractos. Al mismo tiempo, ese sentido común, en relación a la epistemología, parece implicar que los enunciados matemáticos no pueden referirse a objetos abstractos" (en BENACERRAF’S DILEMMA AND INFORMAL MATHEMATICS) y "Según Benacerraf, cualquier explicación de la verdad matemática debe satisfacer dos requisitos básicos: erigirse sobre la base de una semántica y de una epistemología paralelas a las usuales en el discurso no matemático. La semántica usual es necesaria para que los términos de los enunciados matemáticos se refieran a entidades reales, si tales enunciados han de ser verdaderos, como suponemos en nuestro usos lingüísticos habituales. La epistemología se necesita para que la verdad de los enunciados matemáticos presuponga algún conocimiento de las entidades referidas por los términos enunciados, como suponemos en nuestro discurso habitual.... prosigue Benacerraf, en general las explicaciones disponibles de la verdad matemática no logran satisfacer ambos requisitos, sino más bien alguno de ellas a expensas del otro.". Francisco Rodriguez C: Lo que es y no es la verdad matemática
  48. Para una profundización, ver, por ejemplo Douglas Patterson: "Introducción" en New Essays on Tarski and Philosophy; P. M. S Hacker: "On Carnap's Elimination of Metaphysics" en Wittgenstein: Connections and Controversies, etc
  49. Formalismo, I. Filosofía
  50. Para una introducción general, ver Ángel Ruiz Z 26.3 El formalismo (en Historia y filosofía de las matemáticas)
  51. Jean-Paul Collette (1993): Historia de las matemáticas, volumen 2, Volume 2 p 577 y sig
  52. Diego Pareja H (2008): "el concepto moderno de formalismo que incluye las técnicas del razonamiento finitista debemos atribuirlo a Hilbert y a sus discípulos." en 5. 8 – David Hilbert y el formalismo. Razonamientos finistas son aquellos "razonamientos absolutamente seguros y libres de cualquier clase de sospecha" (ibid)
  53. Ferran Mir S (2006): "La conocida intervención de David Hilbert (1862-1943) en el Congreso Internacional de Paris de 1900, en la que planteo los 23 problemas matemáticos a resolver durante el siglo XX, iba mucho más allá de la mera relación de dichos problemas. La convicción claramente expresada por Hilbert de que todo problema ha de tener su solución basada en la pura razón [6, Pags. 125 y ss.]: "En las matemáticas no existe el ignorabimus". Un año antes, Hilbert había publicado su Grundlagen der Geometrie, en el que establecía los axiomas a partir de los cuales podía desarrollarse, mediante pura deducción, toda la disciplina en todas sus variantes, tanto euclideas como no euclideas. Mediante este ideal axiomático podía construir un raciocinio sobre objetos que no necesitaba definir; al contrario de Euclides que había precisado de una definición (intuitiva) de los objetos básicos (punto, línea, plano, etc.). El hecho de prescindir de las definiciones de los objetos básicos, hace que se le haya reprochado la reducción de las matemáticas al estudio de las simples relaciones entre objetos abstractos: un puro juego con símbolos. La combinación del ideal axiomático con la convicción de que todo problema debe tener solución, conducirá en los años sucesivos a la idea de completud del sistema axiomático. En los primeros años del siglo XX, esta idea es todavía vaga [13, P·g. 151], pero esta claro que Hilbert considera que desde un reducido grupo de axiomas pueden derivarse la totalidad de los teoremas aceptados en las matemáticas ordinarias. También esta presente la idea de simplicidad: el conjunto de axiomas ha de ser lo más reducido posible y deben ser independientes unos de otros." en LA POLEMICA INTUICIONISMO FORMALISMO EN LOS AÑOS 20.
  54. Pedro Angulo L (2010): EPISTEMOLOGÍA DE LA MATEMÁTICA. CASO: FORMALISMO
  55. Aroca, José Manuel El progreso de la matemática en los últimos 25 años
  56. H Putnam (1967): The Thesis that Mathematics is Logic.
  57. Russell Marcus (2006): Pluribus Putnams Unum p 6
  58. Keith Hossack (1991): Access to Mathematical Objects.-Crítica: Revista Hispanoamericana de Filosofía.- Vol XXIII, N 68 (Agosto 1991) 157- 181
  59. Iemhoff, Rosalie, Intuitionism in the Philosophy of Mathematics, The Stanford Encyclopedia of Philosophy (Fall 2012 Edition), Edward N. Zalta (ed.), forthcoming URL = <http://plato.stanford.edu/archives/fall2012/entries/intuitionism/>
  60. van Atten, Mark: "Sobre la base de su filosofía de la mente, en la que Kant y Schopenhauer fueron las principales influencias, Brouwer caracteriza principalmente las matemáticas como la libre actividad del pensamiento exacto, una actividad que se basa en la intuición pura del tiempo (interior). Ningún reino independiente de los objetos y el lenguaje juegan algún papel fundamental. De este modo se esforzó por evitar la Escila del platonismo (con sus problemas epistemológico) y el Caribdis del formalismo (con su pobreza de contenido). Dado que, en vista de Brouwer, no hay factor determinante de la verdad matemática fuera de la actividad de pensar, una proposición sólo se hace realidad cuando el sujeto ha experimentado su verdad (por haber llevado a cabo una construcción mental apropiado), de manera similar, una proposición sólo es falsa cuando el sujeto ha experimentado su falsedad (por darse cuenta de que una construcción mental apropiado no es posible). Por lo tanto Brouwer puede afirmar que "no hay verdades sin experiencia" (Brouwer, 1975, p.488)." en 3. Brief Characterization of Brouwer's Intuitionism" en Luitzen Egbertus Jan Brouwer
  61. Carlos Torres A: "El intuicionismo fue la respuesta de Brouwer al logicismo de Russell, a la matemática no constructiva y a las paradojas, y se apoya en tres tesis radicales: i) los objetos matemáticos se construyen directamente en la intuición pura, siendo por ello previos al lenguaje y a la lógica; ii) las leyes que rigen el comportamiento de dichos objetos derivan de su construcción, no de la lógica, como pretenden Frege, Russell y los logicistas 33 y iii) en la matemática no es admisible ninguna teoría que rebase el marco de lo dable en la intuición, como sostienen Hilbert y los cantorianos." en KANT VISTO DESDE LAS MATEMÁTICAS revista unam vol.6/num 1 (2005) sección “ El intuicionismo de Brouwer”, pp 15-19
  62. L. E. J. Brouwer (1913): INTUITIONISM AND FORMALISM Bull. Amer. Math. Soc. 20 (2): 81–96. MR 1559427.
  63. DIEGO PAREJA HEREDIA: "Para los intuicionistas las bases de las matemáticas estaban en la explicación del origen, o la esencia de los números naturales 1, 2, 3,... Para la filosofía intuicionista, todo ser humano tiene una intuición congénita en relación con los números naturales. Esto significa en primer lugar que tenemos una certeza inmediata de lo que significamos con el número “1”, y en segundo lugar, que el proceso mental que originó el numero 1 puede repetirse. La repetición de este proceso, induce la creación del número 2, una nueva repetición y aparece el número 3. En esta forma, el ser humano puede construir cualquier segmento inicial 1, 2, 3,..., n, donde n es un natural arbitrario. Esta construcción mental de un número natural tras de otro, nunca podría darse, si no tuviéramos dentro de nosotros, una preconcepción del tiempo. Cuando afirmamos 2 va después de 1, el término “después” tiene una connotación de tiempo, y en ese aspecto Brouwer se adhiere al filósofo Immanuel Kant (1724-1804) para quien la mente humana tiene una apreciación inmediata de la noción de tiempo. Kant usó la palabra “intuición” para “apreciación inmediata”, y es de allí de donde proviene el término “intuicionismo”. " en 5.7 – Brouwer, Heyting y el Intuicionismo.
  64. La "intuición" a la que se hace referencia tiene un sentido más bien especializado: Miguel Espinoza: "Se supone que un conocimiento intuitivo no ocurre en etapas, no es gradual como una inferencia, como el conocimiento que presupone el lenguaje, como la aplicación de un algoritmo. Digo "se supone" porque la inmidiatez podría ser una ilusión. Que la conciencia sea incapaz de seguir los diferentes pasos del cerebro no significa que biológicamente haya también inmediatez. La rapidez de un ordenador no implica intuición. A veces en matemáticas se entiende también por intuición las operaciones de calculo o lo que llega a entenderse fácilmente. En la intuición, lo aprehendido y la operación de la mente forman un solo proceso, tienen una sola forma, por eso no se plantea el problema de la verdad-adecuacion. Para preguntarnos si lo que pensamos corresponde o no a algo externo al pensamiento, es necesario que el intelecto y la cosa estén separados. Esto no ocurre en la intuición. Es entonces la falta de distinción sujeto-objeto, la inmediatez atribuida a la intuición que ha dado a los intuicionistas la confianza en este modo de conocimiento. Toda inferencia debe estar basada finalmente en verdades intuitivas", en Intuicionismo y objetividad p 101-102
  65. J. BARRIO GUTIÉRREZ: "Intuicionismo matemático. Una de las corrientes matemáticas de más fecundidad en el momento actual es el llamado Intuicionismo matemático. En oposición al formalismo de Hilbert (v.), fue creado por L. Brouwer (v.) sobre la base de anteriores ideas defendidas por L. Kronecker. La tesis fundamental de este i(ntuicionismo) es la afirmación de que la Matemática (v.) está constituida exclusivamente por un conjunto de entes construidos intuitivamente por el matemático, sobre los que se seguirán construyendo otros mediante un sistema operacional claro, preciso y fecundo." en INTUICIONISMO
  66. De acuerdo a Brouwer "un ente solo existe si puede ser construido a partir de la intuición primordial".- Brouwer, citado por Espinoza en Intuicionismo y objetividad p 110.
  67. Dick de Jongh: Intuicionismo
  68. Ferran Mir Sabaté (2006): LA POLEMICA INTUICIONISMO FORMALISMO EN LOS AÑOS 20. El Principio de Tercio Excluso.
  69. A. N. Kolmogorov: "On the principle of excluded middle", pp. 414–437.
  70. ver Jorge Alberto Molina (2008): Negación y Doble Negación en el Intuicionismo de Brouwer
  71. SEP: 2.2 Intuitionism
  72. Dick de Jongh: Intuicionismo
  73. Ver Miguel Espinoza (2003): Intuicionismo y Objetividad (Thémata, Nro 30) p 111 -112 y 103-106
  74. Esta concepción se basa, de acuerdo a Angela Patricia Valencia Salas; Angela Patricia Franco Urián en "el uso de la noción del tiempo como base primordial de su elaboración del continuo. El tiempo es el único elemento “a priori” del continuo. Este se basa en lo que Brouwer denomina “intuición primordial o primigenia”, que consiste en la capacidad de conciencia de la relación entre antes-después, pasado-presente, como unidad de lo continuo y lo discreto, la posibilidad de pensar a la vez en singularidades unidas por un "entre" que nunca se agota por inserción de nuevas singularidades, por tanto es imposible tomar alguno de ellos como autosuficiente construir el otro a partir de ahí. Zalamea (2001) menciona que uno de los rasgos que caracteriza la idea de un continuo sintético es la Genericidad, que refiere a lo no particularizante, a la iniciación de un gran espacio de posibilidades no actualizadas ni determinadas y esto se observa en Brouwer tomando como base su Intuición Primigenia." en SOBRE UNA CONSTRUCCIÒN ALTERNATIVA AL CONTINUO DE CANTOR: EL CONTINUO INTUICIONISTA
  75. ver: Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, Azriel Lévy (1973): Foundations of set theory p 259
  76. L. E. J. Brouwer, citado por D. P HEREDIA 5.7 – Brouwer, Heyting y el Intuicionismo.
  77. Michel Bordeau: El Error de Cantor en Jorge Martínez Contreras, Aura Ponce de León, Luis Villoro: El saber filosófico esp pp 396- 405
  78. Para profundizar estas, ver: Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, Azriel Lévy (1973): Foundations of set theory pp 252-264: "The Primordial intution of integer: Choice sequences and Brouwer's concept of set
  79. van Atten, Mark: "Los teoremas fundamentales del análisis intuicionista - el teorema de la barra, el teorema del abanico, y el teorema de la continuidad - se encuentran en "Sobre los dominios de definición de las funciones" (Brouwer, 1927). Los dos primeros son teoremas estructurales sobre los diferenciales, y el tercero (que no debe confundirse con el principio de continuidad para las secuencias de elección) establece que cada función total [0,1] → ℝ es continua e incluso uniformemente continua. El teorema del abanico es, de hecho, un corolario del teorema de la barra; combinado con el principio de continuidad, que no es válido clásicamente, produce el teorema de continuidad, que tampoco es clásicamente válido. Los teoremas de las barras y el abanico son, por otro lado, clásicamente válido, aunque las pruebas clásicas y intuicionista para ellos no son intercambiables. Las pruebas clásicas no son “intuicionisticamente” aceptable debido a la manera en que depender de PEM, las pruebas intuicionistas no son clásicamente aceptables porque dependen de la reflexión sobre la estructura de las pruebas mentales. En esta reflexión, Brouwer introdujo la noción de la forma de una prueba con "análisis completo" o "canónica", que sería adoptada más tarde por Martin-Löf y por Dummett. En una nota al pie, Brouwer menciona que tales pruebas, que él identifica con los objetos mentales en la mente del sujeto, suelen ser infinitas." en 4. Brouwer's Development of Intuitionism en Luitzen Egbertus Jan Brouwer
  80. Win Veldman: "Some applications of Brouwers Thesis on Bars, en One Hundred Years of Intuitionism (1907-2007): The Cerisy Conference pp 326 y sig (esp p 330)
  81. THIERRY COQUAND (2003): About Brouwer's fan theorem
  82. Para una visión mas profunda de estos desarrollos, ver A.G. Dragalin (originator) Intuitionism. en Encyclopedia of Mathematics.
  83. ver Gustavo Fernández D: Desarrollos posteriores de intuicionismo y constructivismo p 102 y sig
  84. Bishop, E. (1967): Foundations of Constructive Analysis, New York: McGraw-Hill (ver Revisión del libro (ambos en inglés)
  85. Gustavo Fernandez D: "SEMINARIO DE LOGICA Y FILOSOFIA DE LA CIENCIA I, pagina 101: Desarrollos posteriores de intuicionismo y constructivismo
  86. Bridges, Douglas, punto 3.3: Bishop's Constructive Mathematics en Constructive Mathematics, The Stanford Encyclopedia of Philosophy (Fall 2012 Edition), Edward N. Zalta (ed.)
  87. Stewart Shapiro, en Mathematical Structuralism en "Internet Encyclopedia of Philosophy (IEP) 2010
  88. Stewart Shapiro, „Thinking About Mathematics“, Oxford 2000, S. 263
  89. Para una introducción a este aspecto, ver STRUCTURALISM, MATHEMATICAL Ver también Julian C. Cole (2010): Mathematical Structuralism Today
  90. Por ejemplo: Uri Nodelman - Edward N. Zalta.: Foundations for Mathematical Structuralism
  91. Por ejemplo: S. Shapiro (1997): Philosophy of Mathematics: Structure and Ontology
  92. Por ejemplo: Michael D. Resnik (2004): Structuralism and the Independence of Mathematics
  93. Por ejemplo: G. Hellman (1996): Structuralism without structures
  94. Para una visión general del empirismo matemático, ver David Bostock (2009): "Empiricism in the Philosophy of Mathematics" en D. M. Gabbay; P. Thagard; J. Woods (edtrs): Philosophy of Mathematics p 157- 230
  95. J. S. Mill: "La matemática es la ciencia empírica de validez más general.".- citado por Mario A. Natiello en Los fundamentos de la matemática y los teoremas de Gödel.- Véase también J. S. Mill: System of logic ("El sistema de la lógica"), vol 2, libro III, cap XXIV, punto 4, p 162, etc
  96. P Kitcher: The Nature of Mathematical Knowledge, p 4 (introducción)
  97. S. Körner, (1965): "An Empiricist Justification of Mathematics", en Yehoshua Bar-Hillel (ed.), "Logic, Methodology and Philosophy of Science".- Amsterdam: North Holland, 1965, pp. 222-227. (cuentas de "International Congress of Logic, Methodology and Philosophy of Science" 1964)
  98. L Kalmár (1967): "Foundations of mathematics - Whither now?" en I. Lakatos (ed.). "Problems in the Philosophy of Mathematics" Amsterdam: North-Holland, 1967, pp. 192-193. (Proceedings of the Colloquium in the Philosophy of Science, London, 1965.)
  99. En la lógica escolástica, un término sincategoremático (sincategorema) es una palabra que no puede servir como el sujeto o el predicado de una proposición, y por lo tanto no puede representar a ninguna de las categorías de Aristóteles, pero se puede utilizar con otros términos para formar una proposición. Palabras como 'todo', 'y', 'si' son ejemplos de tales términos. Ver Syncategorematic term
  100. Patrick Peccatte (1998): Quasi-empiricism and anti-foundationalism
  101. P Kitcher (1983) The Nature of Mathematical Knowledge (Oxford University Press)
  102. C. E. Behrens (2012): Empiricism: An Environment for Humanist Mathematics
  103. I. Lakatos (1976): A Renaissance of Empiricism in the Recent Philosophy of Mathematics
  104. Eduardo Harada O (2005): El cuasi-empirismo en la filosofía de las matemáticas p 18
  105. Eduardo Harada O (2005): El cuasi-empirismo en la filosofía de las matemáticas p 18

Bibliografía[editar]

Enlaces externos[editar]