Física más allá del Modelo Estándar

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La física más allá del Modelo Estándar se refiere a los desarrollos teóricos necesarios para explicar las deficiencias del Modelo Estándar, tales como el origen de la masa, el problema CP fuerte, la oscilación de neutrinos, la asimetría materia-antimetaria, y la naturaleza de la materia oscura y la energía oscura.[1] Otro problema recae sobre el marco matemático del propio Modelo Estándar – el Modelo Estándar es inconsistente con la relatividad general al punto de que una o las dos teorías ya no tienen sentido en sus descripciones bajo ciertas condiciones (por ejemplo las conocidas singularidades gravitacionales del espacio-tiempo como el Big Bang y el horizonte de sucesos de los agujeros negros).

Las teorías que van más allá del Modelo Estándar incluyen varias extensiones del Modelo Estándar a través de la supersimetría, como el Modelo Estándar mínimamente supersimétrico (MSSM) y el Modelo Estándar casi-mínimamente supersimétrico (NMSSM), o explicaciones completamente nuevas, como la teoría de cuerdas, la teoría M y las dimensiones extra. Ya que estas teorías tienden a reproducir completamente los fenómenos actuales, la pregunta es cual de estas teorías es la correcta, o al menos cuál es la "mejor opción" para llegar a una teoría del Todo, solo puede ser zanjada mediante experimentos y es el área de investigación más activa tanto en teoría como en experimentos.

Problemas con el Modelo Estándar[editar]

A pesar de que a día de hoy es la teoría de partículas con más éxito, el Modelo Estándar no es perfecto.[2]

Observaciones experimentales no explicadas[editar]

Existe un número de observaciones en la Naturaleza para las cuales el Modelo Estándar no proporciona una explicación adecuada.

  • Gravedad. El Modelo Estándar no proporciona una explicación para la gravedad. Encima es incompatible con la teoría de la gravedad de más éxito hasta la fecha, la relatividad general.
  • Materia oscura y energía oscura. Las observaciones del Cosmos nos dicen que el Modelo Estándar sirve para explicar solamente el 4% de la energía presente en el universo. Sobre el 96% que falta, aproximadamente un 24% debe ser materia oscura, es decir, materia que se comporta como la materia que conocemos, pero que apenas interactúa con los campos del Modelo Estándar. El resto debería ser energía oscura, una densidad de energía constante para el vacío. Los intentos de explicar la energía oscura en términos de la energía del vacío del Modelo Estándar llevan a un error de 120 órdenes de magnitud.[3]
  • Masa de los neutrinos. De acuerdo con el Modelo Estándar los neutrinos son partículas sin masa. Sin embargo, los experimentos de las oscilaciones de neutrinos han demostrado que los neutrinos sí tienen masa. Los términos de masa para los neutrinos se pueden añadir a mano al Modelo Estándar, pero esto conduce a nuevos problemas teóricos. (Por ejemplo, los términos de masa deben ser extraordinariamente pequeños).
  • Asimetría de la materia–antimateria. La mayoría del universo está hecho de materia. Sin embargo, el Modelo Estándar predice que la materia y la antimateria deben haber sido creadas en (casi) iguales cantidades, las cuales se hubieran aniquilado unas a otras durante el enfriamiento del universo.

Predicciones teóricas no observadas[editar]

A excepción del bosón de Higgs, todas las demás partículas predichas por el Modelo Estándar han sido observadas en colisionadores de partículas. La explicación del mecanismo de Higgs del Modelo Estándar predice el bosón de Higgs que describe como la simetría de gauge débil SU(2) se rompe y como las partículas fundamentales obtienen masa. Búsquedas experimentales han determinado que si el Modelo Estándar es correcto y el bosón de Higgs existe, entonces es muy probable que tenga una masa entre 125 GeV/c2) y 126 GeV/c2,[4] aunque extensiones simples del Modelo Estándar permiten que tenga una masa entre 185 GeV/c2 y 250 GeV/c2.

El 4 de julio de 2012 los científicos del gran colisionador de hadrones anunciaron el descubrimiento de una partícula consistente con el bosón de Higgs; aun así, todavía no ha sido identificado formalmente como el bosón de Higgs

Problemas teóricos[editar]

Algunos de los aspectos del modelo estándar se añaden de forma especial. Esto no representa un problema per se (es decir, la teoría funciona bien con estas características especiales), pero esto quiere decir que hay una falta de comprensión. Estas características especiales han motivado a los físicos teóricos a buscar teorías más fundamentales con menos parámetros. Algunas de estas características especiales son:

  • El problema de jerarquía – el modelo estándar introduce partículas con masas a través de un proceso conocido como ruptura espontánea de simetría electrodébil provocado por el campo de Higgs. Dentro del modelo estándar, la masa de Higgs obtiene algunas correcciones cuánticas muy grandes debido a la presencia de partículas virtuales (la mayoría de ellas son quark cima virtuales). Estas correcciones son mucho más grandes que la masa de Higgs real. Esto significa que el parámetro de bare mass de Higgs en el modelo estándar debe ser ajustado de mal manera que cancele casi por completo las correcciones cuánticas. Este nivel de ajuste fino está considero como no-natural por muchos físicos teóricos.
  • Problema CP fuerte – teóricamente se puede argumentar que el modelo estándar debe contener un término que rompa la simetría CP —relacionando la materia con la antimateria— en el sector de la interacción fuerte. Experimentalmente, sin embargo, no se ha encontrado semejante violación, lo que implica que el coeficiente de este término está muy próximo a cero. Este ajuste fino también se considera no-natural.
  • Número de parámetros – el modelo estándar depende de 19 parámetros numéricos. Los valores de esto se conocen gracias a experimentos, pero el origen de los valores es desconocido. Algunos teóricos han intentado encontrar relaciones entre los diferentes parámetros, por ejemplo, entre las masas de las partículas en diferentes generaciones.

Teorías de la Gran Unificación[editar]

El modelo estándar tiene tres simetrías gauge; el color SU(3), el isospin débil SU(2), y la simetría de hipercarga U(1), que corresponden a cada una de las tres interacciones fundamentales. Debido a la renormalización, las constantes acopladas de cada una de las tres simetrías varían con la energía en la cual son medidas. Alrededor de 10^19 GeV estos acoplamientos se vuelven aproximadamente iguales. Esto ha llevado a especular que por encima de esta energía, las tres simetrías de gauge del modelo estándar están unificadas en una única simetría de guage con un grupo simple de gauge, y sólo una constante de acoplamiento. Por debajo de esta energía la simetría se rompe espontáneamente dando lugar a las simetrías del modelo estándar.[5] La elección más popular para el grupo de unificación es el grupo unitario especial de cinco dimensiones SU(5) y el grupo ortogonal especial de diez dimensiones SO(10).[6]


Las teorías que unifican las simetrías del modelo estándar de esta manera se llaman Teorías de la gran unificación (o GUTs), y la escala de energía a la cual la simetría unificada se rompe se llama la escala GUT. Generalmente, las teorías de la gran unificación predicen la creación de monopolos magnéticos al principio del universo[7] y la inestabilidad del protón.[8] Neither of which have been observed, and this absence of observation puts limits on the possible GUTs.

Supersimetría[editar]

La Supersimetría extiende el Modelo Estándar añadiendo una clase adicional de simetrías a la Lagrangiana. Estas simetrías intercambian partículas fermiónicas con bosónicas. Tal simetría predice la existencia de partículas supersimétricas, abreviadas como spartículas, lo que incluye a los sleptones, squarks, neutralinos y charginos. Cada partícula del Modelo Estándar tendría un supercompañero cuyo spin se diferencia en 1/2 del de la partícula ordinaria. Debido a la ruptura de supersimetría, las spartículas tienen mucha más masa que sus homólogas ordinarias; tienen tanta masa que los colisionadores de partículas actuales no son lo suficientemente potentes para producirlas, sin embargo, algunos físicos creen que las spartículas serán detectadas cuando el gran colisionador de hadrones en el CERN comience a funcionar.

Neutrinos[editar]

En el modelo estándar, los neutrinos tienen exactamente masa cero (se los considera sin masa). Esto es una consecuencia de que el modelo estándar sólo contenga neutrinos de izquierda. Sin un compañero de derechas adecuado, es imposible añadir una término de renormalización de masa al modelo estándar.[9] Sin embargo, hay medidas que los neutrinos cambian espontáneamente de sabor, lo que implica que los neutrinos tienen masa. Estas medidas solo dan masas relativas a los diferentes sabores. La mejor idea de la masa absoluta de los neutrinos proviene de medidas de precisión del decaimiento del tritio, proporcionando un límite superior de 2 eV, lo que hace que sean al menos 5 órdenes de magnitud más ligeros que las demás partículas del modelo estándar.[10] Esto significa que la extensión del modelo estándar no solo necesita explicar como los neutrinos obtienen masa, sino que también tienen que explicar porqué es tan pequeña.[11]

Un acercamiento al añadir masa a los neutrinos es añadir neutrinos de derecha y hacer que estos se acoplen con los neutrinos de izquierda con un término de masa de Dirac. Los neutrinos de derecha tienen que ser estéril, lo que significa que no participan en ninguna de las interacciones del modelo estándar. Debido a que no tienen carga, los neutrinos de derecha pueden comportarse como sus propias anti-partículas y tener un término de masa de Majorana. Como las otras masas de Dirac en el modelo estándar, se espera que la masa de Dirac de los neutrinos se genere mediante el mecanismo de Higgs, y por tanto se espera que sea de un orden de magnitud similar a las otras masas. La masa de Majorana de los neutrinos de derecha debe descubrirse a través de un método diferente y se espera que esté vinculada a alguna escala de energía de la nueva física más allá del modelo estándar.[12] Sin embargo, cualquier proceso que incluya neutrinos de derecha será suprimido a bajas energías. La corrección debido a estos procesos suprimidos da efectivamente masa a los neutrinos de izquierda que es inversamente proporcional a la masa de Majorana de los de derecha, mecanismo conocido como see-saw.[13] La presencia de neutrinos de derecha pesados explica por tanto la pequeña masa de los neutrinos de izquierda y la ausencia de neutrinos de derecha en las observaciones. Para obtener masas efectivas de los neutrinos en un rango observable con masas de Dirac similares a las otras del modelo estándar, las masas de los neutrinos de derecha deben estar cerca de la escala GUT, uniendo los neutrinos de derecha a la posibilidad de una teoría de la gran unificación.[14]

Los términos de masa mezclan neutrinos de diferentes generaciones.. Esta mezcla está parametrizada por la matriz PMNS, la cual es la matriz análoga para los neutrinos de la matriz de mezcla de quarks CKM. A diferencia de la mezcla de quarks, que es casi mínima, la mezcla de neutrinos parece ser casi máxima. Esto ha llevado a varias especulaciones de simetrías entre las distintas generaciones que podrían explicar los patrones de mezcla.[15] La matriz de mezcla también podría contener algunas fases complejas que rompan la invarianza CP, aunque no hay prueba experimental de éstas. Estas fases podrían crear potencialmente un extra de leptones sobre los anti-leptones en el universo primitivo, un proceso conocido como leptogénesis. Esta simetría podría, en una etapa posterior, convertirse en un exceso de bariones sobre los anti-bariones, y explicar la asimetría entre materia y antimateria en el universo.[16]

Los neutrinos ligeros no pueden explicar la materia oscura perdida porque no tienen suficiente masa. Encima, las simulaciones de formación de estructuras demuestran que están demasiado calientes —es decir, su energía cinética es grande comparada con su masa— mientras que la formación de estructuras similar a la de las galaxias en nuestro universo requiere materia oscura fría. Las simulaciones muestran que los neutrinos pueden explicar como mucho un pequeño porcentaje de la materia oscura que falta. Los neutrinos pesados estériles de derecha son, sin embargo, posibles candidatos para la interacción débil de partículas masivas de la materia oscura.[17]

Teorías del todo[editar]

Teoría de cuerdas[editar]

Existen extensiones, revisiones, sustituciones y reorganizaciones del modelo estándar con el objetivo de corregir éstos y otros problemas. La teoría de cuerdas es una de estas reinvenciones, y muchos físicos teóricos creen que tales teorías son el siguiente paso teórico a una verdadera Teoría del todo. Algunos creen que las teorías de gravedad cuántica como la gravedad cuántica de bucles y otras son candidatos prometedores para una unificación matemática de la teoría cuántica de campos y la relatividad general, requiriendo así cambios menos dramáticos a las teorías que ya existen.[18] Sin embargo, un nuevo documento enviado a Nature pone límites estrictos a los efectos putativos de la gravedad cuántica sobre la velocidad de la luz, y pone en situación desfavorable a algunos modelos actuales de la gravedad cuántica.[19] [20]

De entre las numerosas variantes de la Teoría de cuerdas, muchos piensan que la Teoría M, cuya existencia matemática se propuso por primera vez en una Conferencia de Cuerdas en 1995, puede ser una adecuada candidata para una "ToE", entre ellos los físicos destacados Brian Greene y Stephen Hawking. Aunque todavía no se conoce una descripción matemática completa, existen soluciones a la teoría para casos específicos.[21] Trabajos recientes han propuesto también modelos de cuerdas alternativos, algunos de los cuales carecen de varias propiedades "difíciles de probar" de la Teoría M (por ejemplo, la existencia de las variedades de Calabi-Yau, muchas dimensiones extra, etc.) incluyendo los trabajos de físicos como Lisa Randall.[22] [23]

Posibles nuevas partículas[editar]

  • Axión: una partícula subatómica hipotética. Su existencia fue postulada para explicar la conservación de la simetría CP en el marco de la cromodinámica cuántica (QCD), suponiendo que sería una partícula de masa muy pequeña y sin carga eléctrica. Podría resolver el problema de la materia oscura.
  • Neutralinos: es una partícula elemental hipotética. Es un fermión, y es eléctricamente neutra que aparece en algunas versiones de las teorías o modelos de partículas con supersimetría.
  • WIMPs: weakly interacting massive particles o, partículas masivas que interactúan débilmente, son partículas hipotéticas que podrían explicar la materia oscura.

Véase también[editar]

Referencias[editar]

  1. J. Womersley (February 2005). «Beyond the Standard Model». Symmetry Magazine. Consultado el 23-11-2010.
  2. Lykken (2010). «Beyond the Standard Model». arXiv:1005.1676 [hep-ph]. 
  3. Krauss, Lawrence. A Universe from Nothing. AAI Conference, 2009.
  4. «Higgs bosons: Theory and Searches». Particle Data Group.
  5. Peskin, Michael Edward; Schroeder, Daniel V. (1995). An introduction to quantum field theory. Addison-Wesley. pp. 786–791. ISBN 9780201503975. 
  6. Buchmüller (2002). «Neutrinos, Grand Unification and Leptogenesis». arXiv:hep-ph/0204288v2 [hep-ph]. 
  7. «Magnetic Monopoles». Particle Data Group (2009). Consultado el 20-12-2010.
  8. Pran Nath; Pavel Fileviez Perez (2006). «Proton stability in grand unified theories, in strings, and in branes». arXiv:hep-ph/0601023v3 [hep-ph]. 
  9. Peskin, Michael Edward; Schroeder, Daniel V. (1995). An introduction to quantum field theory. Addison-Wesley. pp. 713–715. ISBN 9780201503975. 
  10. K. Nakamura et al. (Particle Data Group) (2010). «Neutrino Properties». Particle Data Group. Consultado el 20-12-2010.
  11. Wells (2009). «Lectures on Higgs Boson Physics in the Standard Model and Beyond». arXiv:0909.4541 [hep-ph]. 
  12. Wells (2009). «Lectures on Higgs Boson Physics in the Standard Model and Beyond». arXiv:0909.4541 [hep-ph]. 
  13. Yuval Grossman (2003). «TASI 2002 lectures on neutrinos». arXiv:hep-ph/0305245v1 [hep-ph]. 
  14. Guido Altarelli; Ferruccio Feruglio (2004). «Models of Neutrino Masses and Mixings». arXiv:hep-ph/0405048v2 [hep-ph]. 
  15. Guido Altarelli (2007). «Lectures on Models of Neutrino Masses and Mixings». arXiv:0711.0161 [hep-ph]. 
  16. Buchmüller (2002). «Neutrinos, Grand Unification and Leptogenesis». arXiv:hep-ph/0204288v2 [hep-ph]. 
  17. Hitoshi Murayama (2007). «Physics Beyond the Standard Model and Dark Matter». arXiv:0704.2276v1 [hep-ph]. 
  18. L. Smolin, R. Sundrum (2001). Three Roads to Quantum Gravity. Basic Books. ISBN 0465078354. 
  19. A. A. Abdo et al. (Fermi GBM/LAT Collaborations) (2009). «A limit on the variation of the speed of light arising from quantum gravity effects». Nature 462 (7271):  p. 331. doi:10.1038/nature08574. PMID 19865083. Bibcode2009Natur.462..331A. http://www.nature.com/nature/journal/v462/n7271/full/nature08574.html. 
  20. A. A. Abdo et al. (Fermi GBM/LAT Collaborations) (2009). «Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510». arXiv:0908.1832 [astro-ph]. 
  21. J. Maldacena, A. Strominger, E. Witten (1997). «Black hole entropy in M-Theory». Journal of High Energy Physics 1997 (12):  p. 002. doi:10.1088/1126-6708/1997/12/002. Bibcode1997JHEP...12..002M. 
  22. L. Randall, R. Sundrum (1999). «Large Mass Hierarchy from a Small Extra Dimension». Physical Review Letters 83 (17):  pp. 3370–3373. doi:10.1103/PhysRevLett.83.3370. Bibcode1999PhRvL..83.3370R. 
  23. L. Randall, R. Sundrum (1999). «An Alternative to Compactification». Physical Review Letters 83 (23):  pp. 4690–4693. doi:10.1103/PhysRevLett.83.4690. Bibcode1999PhRvL..83.4690R. 

Bibligrafía[editar]

Enlaces externos[editar]