Efecto Hall

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Diagrama del efecto Hall, mostrando el flujo de electrones. (en vez de la corriente convencional).
Leyenda:
1. Electrones
2. Sensor o sonda Hall
3. Imanes
4. Campo magnético
5. Fuente de energía
Descripción
En la imagen A, una carga negativa aparece en el borde superior del sensor Hall (simbolizada con el color azul), y una positiva en el borde inferior (color rojo). En B y C, el campo eléctrico o el magnético están invertidos, causando que la polaridad se invierta. Invertir tanto la corriente como el campo magnético (imagen D) causa que la sonda asuma de nuevo una carga negativa en la esquina superior.
Esquema explicativo.

Se conoce como efecto Hall a la aparición en el interior de un conductor —por el que circula una corriente en presencia de un campo magnético perpendicular al movimiento de las cargas— de un campo eléctrico por separación de cargas que también es perpendicular al movimiento de las cargas y al campo magnético aplicado y que se denomina campo Hall. Lleva el nombre de su primer modelador, el físico estadounidense Edwin Herbert Hall (1855-1938).

En épocas contemporáneas (1985) el físico alemán Klaus von Klitzing y sus colaboradores descubrieron el hoy conocido como efecto Hall cuántico, lo que les valió la obtención del premio Nobel de Física en 1985. En 1998, se otorgó un nuevo premio Nobel de Física a los profesores Laughlin, Strömer y Tsui por el descubrimiento de un nuevo fluido cuántico con excitaciones de carga fraccionarias. Este nuevo efecto ha traído grandes problemas a los físicos teóricos y actualmente constituye uno de los campos de investigación de mayor interés y actualidad en toda la física del estado sólido.

Explicación cualitativa del efecto Hall clásico[editar]

Cuando por un material conductor o semiconductor, circula una corriente eléctrica, y estando este mismo material en el seno de un campo magnético, se comprueba que aparece una fuerza magnética en los portadores de carga que los reagrupa dentro del material, esto es, los portadores de carga se desvían y agrupan a un lado del material conductor o semiconductor, apareciendo así un campo eléctrico perpendicular al campo magnético y al propio campo eléctrico generado por la batería (F_m). Este campo eléctrico es el denominado campo Hall (E_H), y ligado a él aparece la tensión Hall, que se puede medir mediante el voltímetro de la figura.

En el caso de la figura, se tiene una barra de un material desconocido y se quiere saber cuales son sus portadores de carga. Para ello, mediante una batería se hace circular por la barra una corriente eléctrica. Una vez hecho esto, se introduce la barra en el seno de un campo magnético uniforme y perpendicular a la tableta.

Aparecerá entonces una fuerza magnética sobre los portadores de carga, que tenderá a agruparlos a un lado de la barra, apareciendo de este modo una tensión Hall y un campo eléctrico Hall entre ambos lados de la barra. Dependiendo de si la lectura del voltímetro es positiva o negativa, y conociendo la dirección del campo magnético y del campo eléctrico originado por la batería, se puede deducir si los portadores de carga de la barra de material desconocido son las cargas positivas o las negativas.

En la figura de al lado se ve como el material tiene dos zonas: la de la izquierda y la de la derecha. En una zona, los portadores son huecos y en la otra electrones.

Explicación cuantitativa del efecto Hall clásico[editar]

Sea el material por el que circula la corriente con una velocidad v al que se le aplica un campo magnético B. Al aparecer una fuerza magnética F_m, los portadores de carga se agrupan en una región del material, ocasionando la aparición de una tensión V_H y por lo tanto de un campo eléctrico E en la misma dirección. Este campo ocasiona a su vez la aparición de una fuerza eléctrica F_e de dirección contraria a F_m.

F_e = F_m \Rightarrow q \cdot E = q \cdot v \cdot B \Rightarrow E = v \cdot B \Rightarrow V_H / d = v \cdot B \Rightarrow V_H = v \cdot B \cdot d

La física clásica del efecto Hall[editar]

Se sabe que un campo magnético actúa sobre las cargas en movimiento (fuerza de Lorentz).

Una corriente I que atraviesa un material consiste en cargas (electrones) que se desplazan (en dirección contraria a la corriente) con una velocidad que se denomina v. Si se sumerge esa corriente de electrones en un campo magnético B, cada uno de los electrones que forman la corriente estará sometidos a la fuerza de Lorenz Fm = -e.v^B (como en el dibujo se cambió la dirección de v, ya que se está considerando un electrón, no debería considerarse el signo negativo de la carga). Donde -e corresponde a la carga de un electrón, v el vector velocidad del electrón y B el vector campo magnético aplicado.

Effet Hall - explications.svg

La dirección de la fuerza será perpendicular al plano formado por v y B (ya que es resultado del producto vectorial de ambos) y provocará un desplazamiento de electrones en esa dirección.

Como consecuencia se tendrá una concentración de cargas negativas sobre uno de los lados del material y un déficit de cargas negativas en el lado opuesto. Esta distribución de cargas genera una diferencia de potencial entre ambos lados, la tensión de Hall VH, y un campo eléctrico EH.

Este campo eléctrico que genera a su vez una fuerza eléctrica sobre los electrones dada por la ley de Coulomb, Fe = -e . EH, que actúa en dirección contraria que la fuerza de Lorentz. El equilibrio se alcanzará cuando la suma de las dos, de lo cual se deduce que en el equilibrio el valor del campo Hall es: EH = -v^B.

Técnicas de medición[editar]

Sin duda, la técnica de medición más utilizada para la determinación de los portadores de carga y resistividad en un semiconductor es la técnica de Van Der Paw. Es conocida también como técnica de cuatro puntas.

Aplicación del efecto Hall[editar]

Los sensores de Efecto Hall permiten medir :

  • la movilidad de una partícula cargada eléctricamente (electrones, lagunas, etc);
  • los campos magnéticos (teslámetros);
  • la intensidad de corrientes eléctricas (sensores de corriente de efecto Hall);
  • también permiten la elaboración de sensores o detectores de posición sin contacto, utilizados particularmente en el automóvil, para detectar la posición de un árbol giratorio (árbol de levas, caja de cambios, paliers, etc.);
  • se encuentran también sensores de efecto Hall bajo las teclas de los teclados de los instrumentos de música modernos (órganos, órganos digitales, sintetizadores) evitando así el desgaste que sufren los contactos eléctricos tradicionales;
  • se encuentran sensores de efecto Hall en el codificador de un motor de CD;
  • los motores de Efecto Hall (HET) son aceleradores de plasma de gran eficacia.

Véase también[editar]

Enlaces externos[editar]

Efecto Hall descubierto por Edwin Hall[editar]