Distribución log-normal

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En probabilidades y estadísticas, la distribución log-normal es una distribución de probabilidad de una variable aleatoria cuyo logaritmo está normalmente distribuido. Es decir, si X es una variable aleatoria con una distribución normal, entonces exp(X) tiene una distribución log-normal.

La base de una función logarítmica no es importante, ya que loga X está distribuida normalmente si y sólo si logb X está distribuida normalmente, sólo se diferencian en un factor constante.

Log-normal también se escribe log normal o lognormal.

Una variable puede ser modelada como log-normal si puede ser considerada como un producto multiplicativo de muchos pequeños factores independientes. Un ejemplo típico es un retorno a largo plazo de una inversión: puede considerarse como un producto de muchos retornos diarios.

La distribución log-normal tiende a la función densidad de probabilidad

f(x;\mu,\sigma) = \frac{1}{x \sigma \sqrt{2 \pi}} e^{-(\ln(x) - \mu)^2/2\sigma^2}

para x>0, donde \mu y \sigma son la media y la desviación estándar del logaritmo de variable. El valor esperado es

\mathrm{E}(X) = e^{\mu + \sigma^2/2}

y la varianza es

\mathrm{var}(X) = (e^{\sigma^2} - 1) e^{2\mu + \sigma^2}.

Relación con media y la desviación estándar geométrica[editar]

La distribución log-normal, la media geométrica, y la desviación estándar geométrica están relacionadas. En este caso, la media geométrica es igual a \exp(\mu) y la desviación estándar geométrica es igual a \exp(\sigma).

Si una muestra de datos determina que proviene de una población distribuida siguiendo una distribución log-normal, la media geométrica de la desviación estándar geométrica puede utilizarse para estimar los intervalos de confianza tal como la media aritmética y la desviación estándar se usan para estimar los intervalos de confianza para un dato distribuido normalmente.

Límite de intervalo de confianza log geométrica
3σ límite inferior \mu - 3\sigma \mu_\mathrm{geo} / \sigma_\mathrm{geo}^3
2σ límite inferior \mu - 2\sigma \mu_\mathrm{geo} / \sigma_\mathrm{geo}^2
1σ límite inferior \mu - \sigma \mu_\mathrm{geo} / \sigma_\mathrm{geo}
1σ límite superior \mu + \sigma \mu_\mathrm{geo} \sigma_\mathrm{geo}
2σ límite superior \mu + 2\sigma \mu_\mathrm{geo} \sigma_\mathrm{geo}^2
3σ límite superior \mu + 3\sigma \mu_\mathrm{geo} \sigma_\mathrm{geo}^3

Donde la media geométrica \mu_\mathrm{geo} = \exp(\mu) y la desviación estándar geométrica \sigma_\mathrm{geo} = \exp(\sigma)

Momentos[editar]

Los primeros momentos son:

\mu_1=e^{\mu+\sigma^2/2}
\mu_2=e^{2\mu+4\sigma^2/2}
\mu_3=e^{3\mu+9\sigma^2/2}
\mu_4=e^{4\mu+16\sigma^2/2}

o de forma general:

\mu_k=e^{k\mu+k^2\sigma^2/2}.

Estimación de parámetros[editar]

Para determinar los estimadores que más se aproximan a los parámetros μ y σ de la distribución log-normal, podemos utilizar los mismos procedimientos que para la distribución normal. Para no repetirlo, obsérvese que

f_L (x;\mu, \sigma) = \frac 1 x \, f_N (\ln x; \mu, \sigma)

donde por f_L (\cdot) denotamos la función densidad de probabilidad de distribución log-normal, y por f_N (\cdot) a la de la distribución normal. Por lo tanto, utilizando los mismos índices para denotar las distribuciones, podemos escribir que

\begin{matrix}
  \ell_L (x_1, x_2, ..., x_n; \mu, \sigma)
  & = & - \sum _k \ln x_k + \ell_N (\ln x_1, \ln x_2, ..., \ln x_n; \mu, \sigma) = \\
\ & = & \operatorname {const} (\mu, \sigma) + \ell_N (\ln x_1, \ln x_2, ..., \ln x_n; \mu, \sigma).
\end{matrix}

Ya que el primer término es constante respecto a μ y σ, ambas funciones logarítmicas, \ell_L y \ell_N, obtienen su máximo con el mismo μ y σ. Por tanto, utilizando las fórmulas para los estimadores de parámetros de la distribución normal, y la igualdad de arriba, deducimos que para la distribución log-normal se cumple:

\widehat \mu = \frac {\sum_k \ln x_k} n, \ 
        \widehat \sigma^2 = \frac {\sum_k {\left( \ln x_k - \widehat \mu \right)^2}} n.

Distribución relacionada[editar]

  • Si X \sim \ N(\mu, \sigma^2) es una distribución normal, entonces \exp(X) \sim \operatorname{Log-N}(\mu, \sigma^2).
  • Si X_m \sim \operatorname {Log-N} (\mu, \sigma_m^2), \ m = \overline {1 ... n} son variables independentes log-normalmente distribuidas con el mismo parámetro μ y permitiendo que varíe σ, y Y = \prod_{m=1}^N X_m, entonces Y es una variable distribuida log-normalmente como: Y \sim \operatorname {Log-N} \left( \mu, \sum _m \sigma_m^2 \right).

Véase también[editar]

Software[editar]

Se puede usar software o programa de computadora para el ajuste de una distribución de probabilidad, incluyendo la lognormal, a una serie de datos: