Sólido de revolución

De Wikipedia, la enciclopedia libre
(Redirigido desde «Cuerpo de revolución»)
Saltar a: navegación, búsqueda
Un volumen con forma de toro se obtiene por la rotación de un círculo.

Se denomina sólido de revolución o volumen de revolución, al sólido obtenido al rotar una región del plano alrededor de una recta ubicada en el mismo, las cuales pueden o no cruzarse. Dicha recta se denomina eje de revolución.

Sea f una función continua y positiva en el intervalo [a,b]. Si la región R indicada en la figura rota alrededor del eje X, ésta genera un sólido de revolución cuyo volumen tratamos de determinar.

Rotaciones alrededor de los ejes cartesianos[editar]

El volumen de los sólidos generados por revolución alrededor de los ejes cartesianos se pueden obtener mediante las siguientes ecuaciones cuadráticas.

Rotación paralela al eje de abscisas (Eje x)[editar]

El volumen de un sólido generado por el giro de un área comprendida entre dos gráficas, f(x) y g(x) definidas en un intervalo [a,b] alrededor de un eje horizontal, es decir, una recta paralela al eje OX de expresión y=K siendo K constante, viene dado por la siguiente fórmula genérica

V= \pi \int_a^b ([f(x) - K]^2 - [g(x) - K]^2) \,dx

En particular, si se gira una figura plana comprendida entre y=f(x), y=0, x=a y x=b alrededor del eje OX, el volumen del sólido de revolución viene generado por la fórmula:

V= \pi \int_a^b f^2(x) \,dx método de discos.

Rotación paralela al eje de ordenadas (Eje y)[editar]

Éste es otro método que permite la obtención de volúmenes de sólidos generados por el giro de un área comprendida entre dos gráficas cualesquiera, f(x) y g(x), en un intervalo [a,b] alrededor de un eje de revolución paralelo al eje de ordenadas cuya expresión es x=K siendo K constante positiva. La fórmula general del volumen de estos sólidos es:

V= 2\pi \int_a^b (x-k)[f(x) - g(x)]\,dx

Esta fórmula se simplifica si giramos la figura plana comprendida entre y=f(x), y=0, x=a y x=b alrededor del eje OY, ya que el volumen del sólido de revolución viene generado por:

V= 2\pi \int_a^b x f(x)\,dx Método de cilindros o capas.

Véase también[editar]

Referencias[editar]

Enlaces externos[editar]