Cuerpo de cocientes

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

El cuerpo de fracciones de un dominio de integridad es el mínimo cuerpo que contiene a dicho dominio (dadas las propiedades de un dominio de integridad puede probarse que dicho cuerpo existe).

Existencia[editar]

Una de las propiedades más interesantes de un dominio de integridad es la de que existe "el menor cuerpo que lo contiene". De forma más precisa:

Sea R un dominio íntegro (conmutativo y unitario). Denotamos por R^* al conjunto R \setminus \{0\}. Establecemos en el conjunto R \times R^* la relación \mathcal{R} definida por (a,b) \mathcal{R} (c,d) cuando y sólo cuando a \cdot d = b \cdot c. Es sencillo comprobar que \mathcal{R} es una relación de equivalencia. Denotaremos por Q(R) al conjunto cociente \frac{R \times R^*}{\mathcal{R}}, y por \frac{a}{b} a la clase de equivalencia del par ordenado (a,b).

Operaciones suma y producto[editar]

Suma[editar]

Definimos la suma  +: Q(R) \times Q(R) \longrightarrow Q(R) de la siguiente manera:  + (\frac{a}{b},\frac{c}{d}) := \frac{a}{b} + \frac{c}{d} = \frac{(a \cdot d) + (b \cdot c)}{b \cdot d}, cualesquiera que sean \frac{a}{b},\frac{c}{d} \in Q(R). Es sencillo comprobar que es operación interna, asociativa, conmutativa, que tiene elemento neutro \frac{0}{1} y que todo elemento \frac{a}{b} \in Q(R) tiene por elemento simétrico (elemento opuesto) a - \frac{a}{b}. Así, (Q(R),+) es un grupo abeliano.

Producto[editar]

Definimos la multiplicación  \cdot: (Q(R) \setminus \{ 0 \}) \times (Q(R) \setminus \{ 0 \}) \longrightarrow Q(R) de la siguiente manera:  \cdot (\frac{a}{b},\frac{c}{d}) := \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}, cualesquiera que sean \frac{a}{b},\frac{c}{d} \in Q(R) \setminus \{ 0 \}. Es sencillo comprobar que es operación interna, asociativa, conmutativa, que tiene elemento neutro \frac{1}{1} y que todo elemento \frac{a}{b} \in Q(R) tiene por elemento simétrico (elemento inverso) a  \frac{b}{a}. Así, (Q(R) \setminus \{ 0 \},\cdot) es un grupo abeliano.

Distributividad[editar]

Se demuestra sin dificultad que \cdot es distributiva respecto de +. Esto hace que (Q(R),+,\cdot) quede dotado de estructura de cuerpo.

Véase también[editar]