Cinc

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Cobre ← Cinc o zincGalio
  Hexagonal.svg
 
30
Zn
 
               
               
                                   
                                   
                                                               
                                                               
Tabla completaTabla ampliada
Zn,30.jpg
Azul pálido grisáceo
Información general
Nombre, símbolo, número Cinc o zinc, Zn, 30
Serie química Metales de transición
Grupo, período, bloque 12, 4, d
Masa atómica 65,409 u
Configuración electrónica [Ar]3d104s2
Dureza Mohs 2,5
Electrones por nivel 2, 8, 18, 2
Propiedades atómicas
Radio medio 135 pm
Electronegatividad 1,6 (Pauling)
Radio atómico (calc) 142 pm (Radio de Bohr)
Radio covalente 131 pm
Radio de van der Waals 139 pm
Estado(s) de oxidación 2
Óxido Anfótero
1.ª Energía de ionización 906,4 kJ/mol
2.ª Energía de ionización 1733,3 kJ/mol
3.ª Energía de ionización 3833 kJ/mol
4.ª Energía de ionización 5731 kJ/mol
Propiedades físicas
Estado ordinario Sólido (diamagnético)
Densidad 7140 kg/m3
Punto de fusión 692,68 K (420 °C)
Punto de ebullición 1180 K (907 °C)
Entalpía de vaporización 115,3 kJ/mol
Entalpía de fusión 7,322 kJ/mol
Presión de vapor 192,2 Pa a 692,73 K
Varios
Estructura cristalina Hexagonal
N° CAS 7440-66-6
N° EINECS 231-175-3
Calor específico 390 J/(K·kg)
Conductividad eléctrica 16,6·106 S/m
Conductividad térmica 116 W/(K·m)
Velocidad del sonido 3700 m/s a 293,15 K (20 °C)
Isótopos más estables
Artículo principal: Isótopos del cinc o zinc
iso AN Periodo MD Ed PD
MeV
64Zn 48,63% Estable con 34 neutrones
65Zn Sintético 244,26 días ε 1,352 65Cu
66Zn 27,90% Estable con 36 neutrones
67Zn 4,10% Estable con 37 neutrones
68Zn 18,75% Estable con 38 neutrones
70Zn 0,62% Estable con 40 neutrones
72Zn Sintético 46,5 horas β 0,458 72Ga
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.

El cinc o zinc (del alemán Zink)[1] es un elemento químico esencial de número atómico 30 y símbolo Zn, situado en el grupo 12 de la tabla periódica de los elementos.

Las variantes gráficas «zinc» y «cinc» son ambas aceptadas como válidas. La forma con c inicial, «cinc», es preferida por la Real Academia Española por acomodarse mejor a las convenciones ortográficas del español.[2] [3] Sin embargo, la forma con z, «zinc», es la más coherente con el origen de la palabra y, por tanto, con su símbolo químico internacional (Zn), además de concordar con las demás lenguas europeas occidentales (catalán, portugués, italiano, francés, inglés, neerlandés, alemán, etc.).

Características principales[editar]

Cinc puro

El cinc es un metal o mineral, a veces clasificado como metal de transición aunque estrictamente no lo sea, ya que tanto el metal como su especie dispositiva presentan el conjunto orbital completo. Este elemento presenta cierto parecido con el magnesio, y con el cadmio de su grupo, pero del mercurio se aparta mucho por las singulares propiedades físicas y químicas de éste (contracción lantánida y potentes efectos relativistas sobre orbitales de enlace). Es el 23º elemento más abundante en la Tierra y una de sus aplicaciones más importantes es el galvanizado del acero.

Es un metal de color blanco azulado que arde en aire con llama verde azulada. El aire seco no le ataca pero en presencia de humedad se forma una capa superficial de óxido o carbonato básico que aísla al metal y lo protege de la corrosión. Prácticamente el único estado de oxidación que presenta es el +2. En el año 2004 se publicó en la revista Science el primer y único compuesto conocido de cinc en estado de oxidación +1, basado en un complejo organometálico con el ligando pentametilciclopentadieno. Reacciona con ácidos no oxidantes pasando al estado de oxidación +2 y liberando hidrógeno y puede disolverse en bases y ácido acético.

El metal presenta una gran resistencia a la deformación plástica en frío que disminuye en caliente, lo que obliga a laminarlo por encima de los 100 °C. No se puede endurecer por acritud y presenta el fenómeno de fluencia a temperatura ambiente —al contrario que la mayoría de los metales y aleaciones— y pequeñas cargas el más importante.

Historia[editar]

La etimología de cinc parece que viene del alemán Zink, este del Zinken (en español pico, diente), para indicar el aspecto con filos dentados del mineral calamina, luego fue asumido para el metal obtenido a partir de él,[cita requerida] aunque otras fuentes consideran que viene de la palabra persa para piedra.[4]

Las aleaciones de cinc se han utilizado durante siglos —piezas de latón datadas en 1000-1500 a. C. se han encontrado en Canaán y otros objetos con contenidos de hasta el 87% de cinc han aparecido en la antigua región de Transilvania— sin embargo, por su bajo punto de fusión y reactividad química el metal tiende a evaporarse por lo que la verdadera naturaleza del metal no fue comprendida por los antiguos.

Se sabe que la fabricación de latón era conocida por los romanos hacia 30 a. C. Plinio y Dioscórides describen la obtención de aurichalcum (latón) por el procedimiento de calentar en un crisol una mezcla de cadmia (calamina) con cobre; el latón obtenido posteriormente era fundido o forjado para fabricar objetos.

La fundición y extracción de cinc impuro se llevó a cabo hacia el año 1000 en India —en la obra Rasarnava (c. 1200) de autor desconocido se describe el procedimiento— y posteriormente en China y a finales del siglo XIV los indios conocían ya la existencia del cinc como metal distinto de los siete conocidos en la Antigüedad, el octavo metal. En 1597 Andreas Libavius describe una «peculiar clase de estaño» que había sido preparada en la India y llegó a sus manos en pequeña cantidad a través de un amigo; de sus descripciones se deduce que se trataba del cinc aunque no llegó a reconocerlo como el metal procedente de la calamina.

En occidente, hacia 1248, Alberto Magno describe la fabricación de latón en Europa, y en el siglo XVI ya se conocía la existencia del metal. Georgius Agricola (1490-1555) observó en 1546 que podía rascarse un metal blanco condensado de las paredes de los hornos en los que se fundían minerales de cinc; añadiendo en sus notas que un metal similar denominado zincum se producía en Silesia.[4] Paracelso fue el primero en sugerir que el zincum era un nuevo metal y que sus propiedades diferían de las de los metales conocidos sin dar, no obstante, ninguna indicación sobre su origen; en los escritos de Basilio Valentino se encuentran también menciones del zincum. A pesar de ello, en tratados posteriores las frecuentes referencias al cinc, con sus distintos nombres, se refieren generalmente al mineral no al metal libre y en ocasiones se confunde con el bismuto.

Johann Kunkel en 1677 y poco más tarde Stahl en 1702 indican que al preparar el latón con el cobre y la calamina ésta última se reduce previamente al estado de metal libre, el cinc, que fue aislado por el químico Anton von Swab en 1742 y por Andreas Marggraf en 1746, cuyo exhaustivo y metódico trabajo Sobre el método de extracción del cinc de su mineral verdadero, la calamina cimentó la metalurgia del cinc y su reputación como descubridor del metal.

En 1743 se fundó en Bristol el primer establecimiento para la fundición del metal a escala industrial pero su procedimiento quedó en secreto por lo que hubo que esperar 70 años hasta que Daniel Dony desarrollara un procedimiento industrial para la extracción del metal y se estableciera la primera fábrica en el continente europeo.

Tras el desarrollo de la técnica de flotación del sulfuro de cinc se desplazó a la calamina como mena principal. El método de flotación es hoy día empleado en la obtención de varios metales.

Aplicaciones[editar]

Óxido de cinc.

La principal aplicación del cinc —cerca del 50 % del consumo anual— es el galvanizado del acero para protegerlo de la corrosión, protección efectiva incluso cuando se agrieta el recubrimiento ya que el cinc actúa como ánodo de sacrificio. Otros usos son éstos:

Papel biológico[editar]

El cinc es un elemento químico esencial para los seres humanos y ciertos animales. El cuerpo humano contiene alrededor de 40 mg de cinc por kg y muchas enzimas funcionan con su concurso: interviene en el metabolismo de proteínas y ácidos nucleicos, estimula la actividad de aproximadamente 100 enzimas, colabora en el buen funcionamiento del sistema inmunitario, es necesario para la cicatrización de las heridas, interviene en las percepciones del gusto y el olfato y en la síntesis del ADN. El metal se encuentra en la insulina, las proteínas dedo de cinc (zinc finger) y diversas enzimas como la superóxido dismutasa.

Hay 2-4 gramos de cinc[5] distribuidos en todo el cuerpo humano. La mayoría del cinc se encuentra en el cerebro, los músculos, los huesos, el riñón y el hígado, con las concentraciones más altas en la próstata y las partes del ojo.[6] El semen es particularmente rico en cinc, siendo un factor clave en la correcta función de la glándula prostática y en el crecimiento de los órganos reproductivos.[7]

El cinc aumenta la testosterona en sangre indirectamente, funcionando como coenzima en el metabolismo de las hormonas masculinas por medio de su formación a través de la hormona luteinizante (LH), que estimula las células de Leydig.[8] [9] También previene que la testosterona se degrade en estrógeno por medio de la enzima aromatasa.[10]

En el cerebro, el cinc se almacena en determinadas vesículas sinápticas mediante neuronas glutamatérgicas[11] y puede "modular la excitabilidad del cerebro".[12] Desempeña un papel clave en la plasticidad sináptica y por lo tanto en el aprendizaje.[13] Sin embargo, ha sido llamado el "caballo oscuro del cerebro" (“the brain's dark horse”)[11] ya que también puede comportarse como una neurotoxina, lo que sugiere que la adecuada homeostasis del cinc desempeña un papel fundamental en el funcionamiento normal del cerebro y del sistema nervioso central.[11]

Se cree que el aguijón de los escorpiones contienen cinc con una pureza de 1/4 partes.

Deficiencia[editar]

La deficiencia de cinc perjudica al sistema inmunitario, genera retardo en el crecimiento y puede producir pérdida del cabello, diarrea, impotencia, lesiones oculares y de piel, pérdida de apetito, pérdida de peso, tardanza en la cicatrización de las heridas y anomalías en el sentido del olfato y el gusto.[14] Las causas que pueden provocar una deficiencia de cinc son la deficiente ingesta y la mala absorción del mineral —caso de alcoholismo que favorece su eliminación en la orina o dietas vegetarianas en las que la absorción de cinc es un 50% menor que de las carnes— o por su excesiva eliminación debido a desórdenes digestivos.

La deprivación de cinc en los períodos de rápido crecimiento afecta negativamente el desarrollo cognitivo, cerebral y sexual.[9]

Según el CSIC juega un papel de suma importancia en las funciones mediadas por neurotransmisores, actuando como modulador de la excitabilidad neuronal. En este sentido la deficiencia de cinc puede causar trastornos del humor y neurodegeneración, como depresión y Alzheimer.[15]

La disminución de los niveles de LH y testosterona circulantes a causa de la deficiencia de cinc afecta negativamente la actividad de las células de Leydig.

Exceso[editar]

El exceso de cinc, denominado hipercincemia, se ha asociado con bajos niveles de cobre, alteraciones en la función del hierro, disminución de la función inmunológica y de los niveles del colesterol bueno HDL, vómitos, diarrea, daños a los riñones y depresión mental.[16] [17]

Cinc en la dieta[editar]

El cinc se encuentra en diversos alimentos, especialmente en aquellos ricos en proteínas, ya que el cinc queda retenido entre las mismas, como las ostras, carnes rojas, carne de cerdo, cordero, aves de corral, algunos pescados y mariscos. Otras fuentes ricas en cinc son las habas, nueces, granos enteros y levadura. Las frutas y las verduras no son habitualmente buenas fuentes, porque el cinc en las proteínas vegetales no tiene tanta biodisponibilidad para el ser humano como el cinc de las proteínas animales.

Los cereales integrales, las legumbres y los frutos secos son ricos en fitatos, que son conocidos bloqueantes del cinc. La biodisponibilidad del cinc en el pan leudado es mayor que en los productos sin levadura, ya que el proceso de leudado activa la fitasa, que descompone el ácido fítico. El resultado es que mejora la biodisponibilidad del cinc.

La ingesta diaria recomendada de cinc ronda los 11-20 mg para hombres adultos, menor para bebés, niños, adolescentes y mujeres adultas (por su menor peso corporal) y algo mayor para mujeres embarazadas y durante la lactancia.[14] La absorción del cinc es muy variable (entre un 20 y un 30 %), y aumenta cuando el consumo es bajo o cuando aumentan las necesidades.

Aunque los adultos vegetarianos tienen a menudo una ingesta menor que la de los omnívoros, parece que en general presentan un nivel adecuado de cinc, como se refleja en los niveles de cinc en sangre y en los estudios sobre el balance de cinc.[18] Se ha visto que a lo largo del tiempo se produce una adaptación a la dieta vegetariana, dando como resultado una mejor utilización de este elemento.[19] Los hombres vegetarianos y no vegetarianos tienen un consumo de cinc similar[20] mientras que las mujeres vegetarianas presentan un consumo significativamente más bajo. Incluso aunque estas últimas consuman menos cinc, sus niveles son similares a los niveles de las mujeres omnívoras. Las personas de la tercera edad, independientemente de su tipo de dieta, tienen un mayor riesgo de deficiencia de cinc.

Como el cinc, en general, se absorbe de manera menos efectiva a partir de una dieta vegetariana que de una dieta omnívora, es importante que los vegetarianos seleccionen alimentos ricos en cinc.[21]

Abundancia y obtención[editar]

La producción mundial de cinc durante 2011 alcanzó un total de 12,40 millones de toneladas métricas. El principal país productor es China, seguido por Perú y Australia.[22]

Rango Estado Producción en 2011
(en mill. ton/año)
1 China 3,90
2 Perú 1,40
3 Australia 1,40
4 India 0,79
5 Estados Unidos 0,76
6 Canadá 0,66
7 México 0,63
8 Kazajistán 0,50
9 Bolivia 0,43
10 Irlanda 0,35
Fuente:United States Geological Survey (USGS) - 2011

El cinc es el 23º elemento más abundante en la corteza terrestre. Las minas más ricas contienen cerca de un 10% de hierro y entre el 40 y 50% de cinc. Los minerales de los que se extrae son: el sulfuro de cinc conocido como esfalerita en EE.UU. y blenda en Europa; smithsonita (carbonato) en Estados Unidos, pero calamina en Europa; hemimorfita, (silicato) y franklinita (óxido).

De acuerdo a información entregada en el informe anual del United States Geological Survey (USGS), las estimaciones señalan que las reservas económicamente explotables de cinc en el 2011 a nivel mundial alcanzarían las 250 millones de toneladas métricas. Repartiéndose entre China, Estados Unidos, Perú y Kazajistán.[23] Las reservas conocidas (incluyendo aquéllas cuya explotación hoy día no es rentable) rozan los 2000 millones de toneladas.

La producción del cinc comienza con la extracción del mineral, que puede realizarse tanto a cielo abierto como en yacimientos subterráneos. Los minerales extraídos se trituran con posterioridad y se someten a un proceso de flotación para obtener el concentrado.

Los minerales con altos contenidos de hierro se tratan por vía seca: primeramente se tuesta el concentrado para transformar el sulfuro en óxido, que recibe la denominación de calcina, y a continuación se reduce éste con carbono obteniendo el metal (el agente reductor es en la práctica el monóxido de carbono formado). Las reacciones en ambas etapas son:

2 ZnS + 3 O2 → 2 ZnO + 2 SO2
ZnO + CO → Zn + CO2

Otra forma más sencilla y económica de reducir el óxido de cinc es con Carbono. Se colocan los dos moles o porciones molares de óxido de cinc (ZnO), y un mol de Carbono (C), en un recipiente al vacío para evitar que el metal se incendie con el aire en el momento de purificarse, dando como resultado nuevamente óxido de cinc. En esta etapa, la reducción del óxido de cinc, se expresa de la siguiente manera:

2 ZnO + C → 2 Zn + CO2

Por vía húmeda primeramente se realiza el tueste obteniendo el óxido que se lixivia con ácido sulfúrico diluido; las lejías obtenidas se purifican separando las distintas fases presentes. El sulfato de cinc se somete posteriormente a electrólisis con ánodo de plomo y cátodo de aluminio sobre el cual se deposita el cinc formando placas de algunos milímetros de espesor que se retiran cada cierto tiempo. Los cátodos obtenidos se funden y se cuela el metal para su comercialización.

Como subproductos se obtienen diferentes metales como mercurio, óxido de germanio, cadmio, oro, plata, cobre, plomo en función de la composición de los minerales. El dióxido de azufre obtenido en la tostación del mineral se usa para producir ácido sulfúrico que se reutiliza en el lixiviado comercializando el excedente producido.

Los tipos de cinc obtenidos se clasifican según la norma ASTM en función de su pureza:

  • SHG, Special High Grade (99,99%)
  • HG, High Grade (99,90%)
  • PWG Prime Western Grade (98%)

La norma EN 1179 considera cinco grados Z1 a Z5 con contenidos de cinc entre 99,995% y 98,5% y existen normas equivalentes en Japón y Australia. Para armonizar todas ellas, la Organización Internacional de Normalización publicó en 2004 la norma ISO 752 sobre clasificación y requisitos del cinc primario.

Bioquímica[editar]

  • Aleaciones

Las aleaciones más empleadas son las de aluminio (3,5-4,5%, Zamak; 11-13%, Zn-Al-Cu-Mg; 22%, Prestal, aleación que presenta superplasticidad) y cobre (alrededor del 1%) que mejoran las características mecánicas del cinc y su aptitud al moldeo.

Es componente minoritario en aleaciones diversas, principalmente de cobre como latones (3 a 45% de cinc), alpacas (Cu-Ni-Zn) y bronces (Cu-Sn) de moldeo.

  • Compuestos

El óxido de cinc es el más conocido y utilizado industrialmente, especialmente como base de pigmentos blancos para pintura, pero también en la industria del caucho y en cremas solares. Otros compuestos importantes son: sulfato de cinc (nutriente agrícola y uso en minería), cloruro de cinc (desodorantes) y sulfuro de cinc (pinturas luminiscentes).

  • Isótopos

El cinc existente en la naturaleza está formado por cuatro isótopos estables, Zn-64 (48,6%), Zn-66, Zn-67, y Zn-68. Se han caracterizado 22 radioisótopos de los que los más estables son Zn-65 y Zn-72 con periodos de semidesintegración de 244,26 días y 46,5 horas respectivamente; el resto de isótopos radioactivos tienen periodos de semidesintegración menores que 14 horas y la mayoría menores que un segundo. El cinc tiene cuatro estados metaestables.

Precauciones[editar]

El cinc metal no está considerado como tóxico pero sí algunos de sus compuestos como el óxido y el sulfuro. En la década de los 40 se observó que en la superficie del acero galvanizado se forman con el tiempo "bigotes de cinc" (zinc whiskers) que pueden liberarse al ambiente provocando cortocircuitos y fallos en componentes electrónicos. Estos bigotes se forman tras un período de incubación que puede durar días o años y crecen a un ritmo del orden de 1 mm al año. El problema causado por estos bigotes se ha agudizado con el paso del tiempo por haberse construido las salas de ordenadores y equipos informáticos sobre suelos elevados para facilitar el cableado en las que era común el uso de acero galvanizado, tanto en la estructura portante como en la parte posterior de las baldosas. Las edades de dichas salas, en muchos casos de 20 o 30 años propician la existencia de pelos en cantidades y longitudes peligrosas susceptibles de provocar fallos informáticos. Además, la progresiva miniaturización de los equipos disminuye la longitud necesaria para provocar el fallo y los pequeños voltajes de funcionamiento impiden que se alcance la temperatura de fusión del metal provocando fallos crónicos que pueden ser incluso intermitentes.

Véase también[editar]

Referencias[editar]

  1. Diccionario de la Lengua Española Vigésima segunda edición Consultado el 18 de agosto de 201
  2. «Variantes gráficas en palabras que pueden escribirse con z o con c ante e, i», en Ortografía de la lengua española. Real Academia Española (2010). ISBN 978-84-670-3426-4. Capítulo 6.2.2.7.1.2. Página 125.
  3. «Cinc», en Diccionario panhispánico de dudas. Real Academia Española (2005).
  4. a b Habashi, Fathi (en inglés, PDF), Discovering the 8th Metal, International Zinc Association (IZA), http://www.iza.com/Documents/Communications/Publications/History.pdf, consultado el 2010-08-18 
  5. «Zinc and the immune system». Proc Nutr Soc 59 (4):  p. 541 pp. 541–52. 2000. doi:10.1017/S0029665100000781. PMID 11115789. 
  6. Wapnir, Raul A. (1990). Protein Nutrition and Mineral Absorption. Boca Raton, Florida: CRC Press. ISBN 0-8493-5227-4. 
  7. Berdanier, Carolyn D.; Dwyer, Johanna T.; Feldman, Elaine B. (2007). Handbook of Nutrition and Food. Boca Raton, Florida: CRC Press. ISBN 0-8493-9218-7. 
  8. «Consumir cinc aumenta la testosterona y la masa muscular».
  9. a b M Jimena Salgueiro et al. (2004). Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. «Deficiencia de zinc en relación con el desarrollo intelectual y sexual». Rev Cubana Salud Pública 30 (2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662004000200007. 
  10. . Department of Food and Nutrition, College of Home Economics, Hanyang University, Seoul, Korea. J Nutr.«Dietary Zinc Deficiency Alters 5a-Reduction and Aromatization of Testosterone and Androgen and Estrogen Receptors in Rat Liver AE-SON OM AND KYUNG-WOH CHUNG». The Journal of Nutrition 126 (4):  p. 842-8. 1996. http://www.ironbody.de/bodybuilding/assets/plugindata/pools/Zink_und_Testosteron.pdf. 
  11. a b c Bitanihirwe BK, Cunningham MG (2009). «Zinc: The brain's dark horse». Synapse 63 (11):  p. 1029 pp. 1029–49. doi:10.1002/syn.20683. PMID 19623531. 
  12. Hambidge, K. M. and Krebs, N. F. (2007). «Zinc deficiency: a special challenge». J. Nutr. 137 (4):  p. 1101 pp. 1101–5. PMID 17374687. 
  13. Nakashima AS, Dyck RH (2009). «Zinc and cortical plasticity». Brain Res Rev 59 (2):  p. 347 pp. 347–73. doi:10.1016/j.brainresrev.2008.10.003. PMID 19026685. 
  14. a b «Zinc en la dieta. Medline Plus». Consultado el 17 de agosto de 2012.
  15. Sánchez-Blázquez P, Rodríguez-Muñoz M, Bailón C, Garzón J. (julio 2012). «GPCRs Promote the Release of Zinc Ions Mediated by nNOS/NO and the Redox Transducer RGSZ2 Protein». Antioxid Redox Signal. doi:10.1089/ars.2012.4517.  Consultado en: «Investigadores del CSIC descubren que el zinc es "clave" en la neurotransmisión cerebral». Consultado el 17 agosto de 2012. 
  16. «Zinc: dosis, fuentes, beneficios y carencia».
  17. «Relación entre las cantidades de cobre y cinc administradas a pacientes graves con nutrición parenteral total y los niveles de cobre y cinc en plasma y eritrocitos A. M. Menéndez». Nutrición Hospitalaria 23 (4). 2008. http://scielo.isciii.es/scielo.php?pid=S0212-16112008000500010&script=sci_arttext&tlng=pt. 
  18. Hunt, J.R., Matthys, L.A., and jhonson, L.K.. Zinc absorption, mineral balance, and blood lipids in women consuming controlled lectoovovegetarian and omnivorous diets for 8 wk. (Am J Clin Nutr., 67, 421, 1998).. 
  19. Kies, C., Young, E., and McEndree, L.. Zinc bioavailability from vegetarian diets. In: Nutritional Bioavailability of Zinc, Vol. 210. Inglett, G.E. (ed), American Chemical Society, Washington, DC, 1983.. 
  20. Ball, M.J., and Ackland, M.L.. Zinc intake and status in Australian vegetarians (Br J Nutri., 83, 27, 2000).. 
  21. Gibson, R.S.. Content and bioavailability of trace elements in vegetarian diets (Am J Clin Nutr., 59, 1223S, 1994).. 
  22. United States Geological Survey (USGS) (Enero de 2012). «La producción de cinc en el mundo en 2011». Mineral Commodity Summaries 2012.
  23. United States Geological Survey (USGS) - 2011.
  • Spelter. The American Heritage® Dictionary of the English Language: Fourth Edition. 2000.
  • Hershfinkel Michal, Silverman William F, and Sekler Israel (2007). "The Zinc Sensing Receptor, a Link Between Zinc and Cell Signaling". Mol Med 13 (7-8): 331-336. doi:10.2119/2006-00038.Hershfinkel. PMID 17728842.
  • Age-Related Eye Disease Study Research Group. www.pubmed.gov. Retrieved on 2007-11-13.
  • Zinc content of selected foods per common measure (pdf). USDA National Nutrient Database for Standard Reference, Release 20. USDA. Retrieved on 2007-12-06.
  • Solomons, N.W. (2001) Dietary Sources of zinc and factors affecting its bioavailability. Food Nutr. Bull. 22: 138-154.
  • Sandstead, H. H. (1996) Zinc deficiency: a public health problem? Am. J. Dis. Children. 145: 853-859.
  • Castillo-Duran, C., Vial, P. & Vauy, R. (1988) Trace mineral balance during acute diarrhea in infants. Journal of Pediatrics. 113: 452-457.
  • Manary, M.J., et al, (2000). Dietary phytate reduction improves zinc absorption in Malawian children recovering from tuberculosis but not in well children. Journal of Nutrition, 130: 2959-2964.
  • Ikeda M, Ikui A, Komiyama A, Kobayashi D, Tanaka M (2008). "Causative factors of taste disorders in the elderly, and therapeutic effects of zinc". J Laryngol Otol 122 (2): 155–60. doi:10.1017/S0022215107008833. PMID 17592661.
  • Stewart-Knox BJ, Simpson EE, Parr H, et al (2008). "Taste acuity in response to zinc supplementation in older Europeans". Br. J. Nutr. 99 (1): 129–36. doi:10.1017/S0007114507781485. PMID 17651517.
  • Stewart-Knox BJ, Simpson EE, Parr H, et al (2005). "Zinc status and taste acuity in older Europeans: the ZENITH study". Eur J Clin Nutr 59 Suppl 2: S31–6. doi:10.1038/sj.ejcn.1602295. PMID 16254578.
  • McDaid O, Stewart-Knox B, Parr H, Simpson E (2007). "Dietary zinc intake and sex differences in taste acuity in healthy young adults". J Hum Nutr Diet 20 (2): 103–10. doi:10.1111/j.1365-277X.2007.00756.x. PMID 17374022.
  • Nin T, Umemoto M, Miuchi S, Negoro A, Sakagami M (2006). "Treatment outcome in patients with taste disturbance" (en japonés). Nippon Jibiinkoka Gakkai Kaiho 109 (5): 440–6. PMID 16768159.
  • Shah, D. & Sachdev, H.P.S. (2006) "Zinc deficiency in pregnancy and fetal outcome". Nutrition Reviews, 64: 15-30.
  • Sanstead, H. H. et al, (2000) "Zinc nutriture as related to brain". J. Nutr. 130: 140S-146S.
  • Black, M.M. (2003) "The evidence linking zinc deficiency with children’s cognitive and motor functioning". J. Nutr. 133: 1473S-1476S.
  • Black, M. (1998) "Zinc deficiency and child development". Am. J. Clin. Nutr. 68: 464S-9S.
  • Eby GA (2007). "Zinc treatment prevents dysmenorrhea". Med. Hypotheses 69 (2): 297–301. doi:10.1016/j.mehy.2006.12.009. PMID 17289285.
  • "Neurobiology of Zinc-Influenced Eating Behavior". Retrieved on 2007-07-19.
  • Stowe CM, Nelson R, Werdin R, et al: "Zinc phosphide poisoning in dogs". JAVMA 173:270, 1978.
  • Aydemir, T, B.; Blanchard, R.K.; Cousins, R.J (2006). "Zinc Supplementation of Young Men Alters Metallothionein, Zinc Transporter, and Cytokine Gene Expression in Leucocyte Populations". PNS 103 (3): 1699-1704.
  • Valko, M; Morris, H.; Cronin, MTD (2005). "Metals, Toxicity and Oxidative stress". Current Medicinal Chemistry (12): 1161-1208.
  • Godfrey JC, Godfrey NJ, Novick SG. (1996). "Zinc for treating the common cold: Review of all clinical trials since 1984.". PMID 8942045.
  • US Pharmacist, "Zinc and the Common Cold: What Pharmacists Need to Know", Darrell T. Hulisz, Pharm.D.
  • Muyssen et al., (Aquat Toxicol. 2006).
  • "Zinc toxicity" by GJ Fosmire, American Journal of Clinical Nutrition.
  • "Valores de referencia de energía y nutrientes para la población venezolana" Caracas. Ministerio de Sanidad y Desarrollo Social. Instituto Nacional de Nutrición, 2000.
  • Inorganic Chemistry, Holleman & Wiberg, Academic Press, 1995.

Bibliografía[editar]

  • Diccionario Enciclopédico Hispano-Americano, Tomo XXIII, Montaner y Simón Editores, Barcelona, 1898.
  • Asociación Latinoamericana de Zinc – LATIZA.
  • Los Alamos National Laboratory – Zinc.
  • WebElements.com – Zinc.
  • Zincado Electrolítico. – Aplicación en líneas de producción.
  • Zinc Níquel. – Aleación de excelente poder anticorrosivo.
  • Asturiana de Zinc S.A. – Productora de Cinc, presente en varios continentes y líder del mercado actual de Cinc a nivel mundial (Xtrata Zinc).
  • ATSDR en Español – ToxFAQs™: Cinc Departamento de Salud y Servicios Humanos de EE. UU. (dominio público).
  • Enciclopedia Libre – Cinc.
  • Instituto Nacional de Seguridad e Higiene en el Trabajo de España: Ficha internacional de seguridad química del cinc.
  • International Zinc Association.
  • NASA Goddard Space Flight Center – Zinc Whiskers.

Enlaces externos[editar]