Carl Hierholzer

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Carl Hierholzer
Nacimiento 2 de octubre, 1840
Friburgo de Brisgovia
Fallecimiento 13 de septiembre, 1871
Residencia Flag of Germany.svg Alemania
Nacionalidad Alemana
Campo Matemática
Teoría de grafos
Instituciones Universidad de Karlsruhe
Alma máter Universidad de Karlsruhe
Universidad de Heidelberg
Supervisor doctoral Ludwig Otto Hesse
Conocido por Caracterización formal del ciclo euleriano

Carl Hierholzer (n. 2 de octubre, 1840 en Friburgo de Brisgovia - 13 de septiembre, 1871) fue un matemático alemán. Estudió matemáticas en la Universidad de Karlsruhe, y obtuvo su doctorado en la Universidad de Heidelberg en 1865. Su supervisor durante el doctorado fue Ludwig Otto Hesse (1811–1874). En 1870 Hierholzer escribió su habilitación sobre secciones canónicas, titulada Ueber Kegelschnitte im Raum (Acerca de las secciones esféricas en el espacio), en Karlsruhe, donde posteriormente fue profesor.

Hierholzer demostró que un grafo tiene un ciclo euleriano si y sólo si es conexo y cada vértice tiene grado par. Este resultado había sido dado, sin demostración, por Leonhard Euler en 1736. Hierholzer aparentemente dio la demostración justo antes de su prematura muerte en 1871, a un colega que luego organizó el contenido para su publicación póstuma, la cual apareció en 1873, bajo el nombre Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren.

Obra[editar]

  • C. Hierholzer: Ueber Kegelschnitte im Raume (Acerca de las secciones esféricas en el espacio). Tesis para la obtención del permiso venia docendi en el Instituto Politécnico Granducal de Karlsruhe. Mathematische Annalen II (1870), 564–586. [1] [2]
  • C. Hierholzer: Ueber eine Fläche der vierten Ordnung (Acerca de una superficie de cuarto orden). Mathematische Annalen IV (1871), 172–180. [3] [4]
  • C. Hierholzer: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren (Acerca de la posibilidad de recorrer un grafo sin repeticiones ni interrupciones). Mathematische Annalen VI (1873), 30–32. [5] [6]

Bibliografía[editar]

  • Barnett, J.H., "Early Writings on Graph Theory: Euler Circuits and The Königsberg Bridge Problem" [7]