Campo magnético

De Wikipedia, la enciclopedia libre
(Redirigido desde «Campo magnetico»)
Saltar a: navegación, búsqueda
Líneas mostrando el campo magnético de un imán de barra, producidas por limaduras de hierro sobre papel.

Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y la magnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales. El campo magnético es más comúnmente definido en términos de la fuerza de Lorentz ejercida en cargas eléctricas. Campo magnético puede referirse a dos separados pero muy relacionados símbolos B y H.

Los campos magnéticos son producidos por cualquier carga eléctrica en movimiento y el momento magnético intrínseco de las partículas elementales asociadas con una propiedad cuántica fundamental, su espín. En la relatividad especial, campos eléctricos y magnéticos son dos aspectos interrelacionados de un objeto, llamado el tensor electromagnético. Las fuerzas magnéticas dan información sobre la carga que lleva un material a través del efecto Hall. La interacción de los campos magnéticos en dispositivos eléctricos tales como transformadores es estudiada en la disciplina de circuitos magnéticos.

Fuerza de Lorentz[editar]

Entre las definiciones de campo magnético se encuentra la dada por la fuerza de Lorentz. Esto sería el efecto generado por una corriente eléctrica o un imán, sobre una región del espacio en la que una carga eléctrica puntual de valor (q), que se desplaza a una velocidad \mathbf{(v)}, experimenta los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad (v) como al campo (B). Así, dicha carga percibirá una fuerza descrita con la siguiente ecuación.

\mathbf{F} = q\mathbf{v} \times \mathbf{B}

donde F es la fuerza magnética, v es la velocidad y B el campo magnético, también llamado inducción magnética y densidad de flujo magnético. (Nótese que tanto F como v y B son magnitudes vectoriales y el producto vectorial tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será:

|\mathbf{F}| = |q||\mathbf{v}||\mathbf{B}|\cdot \mathop{\sen} (\theta)

La existencia de un campo magnético se pone de relieve gracias a la propiedad (la cual la podemos localizar en el espacio) de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre puede ser considerada un magnetómetro.

Historia[editar]

Si bien algunos materiales magnéticos han sido conocidos desde la antigüedad, como por ejemplo el poder de atracción que la magnetita ejerce sobre el hierro, no fue sino hasta el siglo XIX cuando la relación entre la electricidad y el magnetismo quedó plasmada, pasando ambos campos de ser diferenciados a formar el cuerpo de lo que se conoce como electromagnetismo.

Antes de 1820, el único magnetismo conocido era el del hierro. Esto cambió con un profesor de ciencias poco conocido de la Universidad de Copenhague, Dinamarca, Hans Christian Oersted. En 1820 Oersted preparó en su casa una demostración científica a sus amigos y estudiantes. Planeó demostrar el calentamiento de un hilo por una corriente eléctrica y también llevar a cabo demostraciones sobre el magnetismo, para lo cual dispuso de una aguja de brújula montada sobre una peana de madera.

Mientras llevaba a cabo su demostración eléctrica, Oersted notó para su sorpresa que cada vez que se conectaba la corriente eléctrica, se movía la aguja de la brújula. Se calló y finalizó las demostraciones, pero en los meses sucesivos trabajó duro intentando explicarse el nuevo fenómeno.¡Pero no pudo! La aguja no era ni atraída ni repelida por ella. En vez de eso tendía a quedarse en ángulo recto. Hoy sabemos que esto es una prueba fehaciente de la relación intrínseca entre el campo magnético y el campo eléctrico plasmada en las ecuaciones de Maxwell.

Como ejemplo para ver la naturaleza un poco distinta del campo magnético basta considerar el intento de separar el polo de un imán. Aunque rompamos un imán por la mitad éste "reproduce" sus dos polos. Si ahora volvemos a partir otra vez en dos, nuevamente tendremos cada trozo con dos polos norte y sur diferenciados. En magnetismo no existen los monopolos magnéticos.

Nombre[editar]

El nombre de campo magnético o intensidad del campo magnético se aplica a dos magnitudes:

  • La excitación magnética o campo H es la primera de ellas, desde el punto de vista histórico, y se representa con H.
  • La inducción magnética o campo B, que en la actualidad se considera el auténtico campo magnético, y se representa con B.

Desde un punto de vista físico, ambos son equivalentes en el vacío, salvo en una constante de proporcionalidad (permeabilidad) que depende del sistema de unidades: 1 en el sistema de Gauss, \mu_0=4 \pi \cdot 10^{-7}{\mbox{N}}{\mbox{A}^{-2}} en el SI. Solo se diferencian en medios materiales con el fenómeno de la magnetización.

Uso[editar]

El campo H se ha considerado tradicionalmente el campo principal o intensidad de campo magnético, ya que se puede relacionar con unas cargas, masas o polos magnéticos por medio de una ley similar a la de Coulomb para la electricidad. Maxwell, por ejemplo, utilizó este enfoque, aunque aclarando que esas cargas eran ficticias. Con ello, no solo se parte de leyes similares en los campos eléctricos y magnéticos (incluyendo la posibilidad de definir un potencial escalar magnético), sino que en medios materiales, con la equiparación matemática de H con E, por un lado, y de B con D, por otro, se pueden establecer paralelismos útiles en las condiciones de contorno y las relaciones termodinámicas; las fórmulas correspondientes en el sistema electromagnético de Gauss son:

\begin{array}{lll}
\mathbf{B} = \mu \mathbf{H}  & \qquad & \mathbf{H} = \mathbf{B} - 4\pi\mathbf{M}\\
\mathbf{D} = \epsilon\mathbf{E} & & \mathbf{E} = \mathbf{D} - 4\pi\mathbf{P}
\end{array}

En electrotecnia no es raro que se conserve este punto de vista porque resulta práctico.

Con la llegada de las teorías del electrón de Lorentz y Poincaré, y de la relatividad de Einstein, quedó claro que estos paralelismos no se corresponden con la realidad física de los fenómenos, por lo que hoy es frecuente, sobre todo en física, que el nombre de campo magnético se aplique a B (por ejemplo, en los textos de Alonso-Finn y de Feynman).[1] En la formulación relativista del electromagnetismo, E no se agrupa con H para el tensor de intensidades, sino con B.

En 1944, F. Rasetti preparó un experimento para dilucidar cuál de los dos campos era el fundamental, es decir, aquel que actúa sobre una carga en movimiento, y el resultado fue que el campo magnético real era B y no H.[2]

Para caracterizar H y B se ha recurrido a varias distinciones. Así, H describe cuan intenso es el campo magnético en la región que afecta, mientras que B es la cantidad de flujo magnético por unidad de área que aparece en esa misma región. Otra distinción que se hace en ocasiones es que H se refiere al campo en función de sus fuentes (las corrientes eléctricas) y B al campo en función de sus efectos (fuerzas sobre las cargas).

Fuentes del campo magnético[editar]

Un campo magnético tiene dos fuentes que lo originan. Una de ellas es una corriente eléctrica de conducción, que da lugar a un campo magnético estático, si es constante. Por otro lado una corriente de desplazamiento origina un campo magnético variante en el tiempo, incluso aunque aquella sea estacionaria.

La relación entre el campo magnético y una corriente eléctrica está dada por la ley de Ampère. El caso más general, que incluye a la corriente de desplazamiento, lo da la ley de Ampère-Maxwell.

Campo magnético producido por una carga puntual[editar]

El campo magnético generado por una única carga en movimiento (no por una corriente eléctrica) se calcula a partir de la siguiente expresión:

\mathbf{B}=\frac{\mu_0}{4\pi}\frac{(q\mathbf{v})\times \hat{\mathbf{u}}_r}{r^2}

Donde \mu_0=4 \pi \cdot 10^{-7}\frac{\mbox{N}}{\mbox{A}^2}. Esta última expresión define un campo vectorial solenoidal, para distribuciones de cargas en movimiento la expresión es diferente, pero puede probarse que el campo magnético sigue siendo un campo solenoidal.

Campo magnético producido por una distribución de cargas[editar]

  • La inexistencia de cargas magnéticas lleva a que el campo magnético es un campo solenoidal lo que lleva a que localmente puede ser derivado de un potencial vector \mathbf{A}, es decir:

\mathbf{B} = \nabla \times \mathbf{A}

A su vez este potencial vector puede ser relacionado con el vector densidad de corriente mediante la relación:

\Delta \mathbf{A} = \mu_0 \mathbf{j}

La ecuación anterior planteada sobre \scriptstyle \R^3, con una distribución de cargas contenida en un conjunto compacto, la solución es expresable en forma de integral. Y el campo magnético de una distribución de carga viene dado por:

\mathbf{B}(\mathbf{r}) =\frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{j}_1 \times \mathbf{\hat{u}}_r} {\|\mathbf{r}-\mathbf{r}_1\|^2}\ \mathrm{d}V_1

Inexistencia de cargas magnéticas aisladas[editar]

Cabe destacar que, a diferencia del campo eléctrico, en el campo magnético no se ha comprobado la existencia de monopolos magnéticos, sólo dipolos magnéticos, lo que significa que las líneas de campo magnético son cerradas, esto es, el número neto de líneas de campo que entran en una superficie es igual al número de líneas de campo que salen de la misma superficie. Un claro ejemplo de esta propiedad viene representado por las líneas de campo de un imán, donde se puede ver que el mismo número de líneas de campo que salen del polo norte vuelve a entrar por el polo sur, desde donde vuelven por el interior del imán hasta el norte.

Ilustración de un campo magnético alrededor de un alambre a través del cual fluye corriente eléctrica.

Como se puede ver en el dibujo, independientemente de que la carga en movimiento sea positiva o negativa, en el punto A nunca aparece campo magnético; sin embargo, en los puntos B y C el campo magnético invierte su dirección dependiendo de si la carga es positiva o negativa. La dirección del campo magnético viene dado por la regla de la mano derecha, siendo las pautas las siguientes:

  • en primer lugar se imagina un vector qv, en la misma dirección de la trayectoria de la carga en movimiento. La dirección de este vector depende del signo de la carga, esto es, si la carga es positiva y se mueve hacia la derecha, el vector +qv estará orientado hacia la derecha. No obstante, si la carga es negativa y se mueve hacia la derecha, el vector es -qv va hacia la izquierda;
  • a continuación, vamos señalando con los cuatro dedos de la mano derecha (índice, medio, anular y meñique), desde el primer vector qv hasta el segundo vector Ur, por el camino más corto o, lo que es lo mismo, el camino que forme el ángulo menor entre los dos vectores. El pulgar extendido indicará en ese punto la dirección del campo magnético.

Energía almacenada en campos magnéticos[editar]

La energía es necesaria para generar un campo magnético, para trabajar contra el campo eléctrico que un campo magnético crea y para cambiar la magnetización de cualquier material dentro del campo magnético. Para los materiales no-dispersivos, se libera esta misma energía tanto cuando se destruye el campo magnético para poder modelar esta energía, como siendo almacenado en el campo magnético.

Para materiales lineales y no dispersivos (tales que \scriptstyle B = \mu H donde μ es independiente de la frecuencia), la densidad de energía es:

\mathcal{E}_M = \frac{B^2}{2\mu} = \frac{\mu H^2}{2}

Si no hay materiales magnéticos alrededor, entonces el μ se puede substituir por μ0. La ecuación antedicha no se puede utilizar para los materiales no lineales, se utiliza una expresión más general dada abajo.

Generalmente la cantidad incremental de trabajo por el δW del volumen de unidad necesitado para causar un cambio pequeño del δB del campo magnético es: δW= H*δB

Una vez que la relación entre H y B se obtenga, esta ecuación se utiliza para determinar el trabajo necesitado para alcanzar un estado magnético dado. Para los materiales como los ferromagnéticos y superconductores el trabajo necesitado también dependerá de cómo se crea el campo magnético.

Determinación del campo de inducción magnética B[editar]

La figura muestra las relaciones entre los vectores. Se observa que:
* (a) la fuerza magnética se anula cuando \,\!v \to 0,
* (b) la fuerza magnética se anula si v es paralela o antiparalela a la dirección de B (en estos casos \,\!\theta = 0^ \circ o bien \,\!\theta = 180^ \circ y \vec v \times \vec B = 0)
*(c) si v es perpendicular a B (\,\!\theta = 90^ \circ) la fuerza desviadora tiene su máximo valor, dado por: \,\!F_\perp =q_0vB

El campo magnético para cargas que se mueven a velocidades pequeñas comparadas con velocidad de la luz, puede representarse por un campo vectorial. Sea una carga eléctrica de prueba q_0 en un punto P de una región del espacio moviéndose a una cierta velocidad arbitraria v respecto a un cierto observador que no detecte campo eléctrico. Si el observador detecta una deflexión de la trayectoria de la partícula entonces en esa región existe un campo magnético. El valor o intensidad de dicho campo magnético puede medirse mediante el llamado vector de inducción magnética B, a veces llamado simplemente "campo magnético", que estará relacionado con la fuerza F y la velocidad v medida por dicho observador en el punto P: Si se varía la dirección de v por P, sin cambiar su magnitud, se encuentra, en general, que la magnitud de F varía, si bien se conserva perpendicular a v . A partir de la observación de una pequeña carga eléctrica de prueba puede determinarse la dirección y módulo de dicho vector del siguiente modo:

  • La dirección del "campo magnético" se define operacionalmente del siguiente modo. Para una cierta dirección de v, la fuerza F se anula. Se define esta dirección como la de B.
  • Una vez encontrada esta dirección el módulo del "campo magnético" puede encontrarse fácilmente ya que es posible orientar a v de tal manera que la carga de prueba se desplace perpendicularmente a B. Se encuentra, entonces, que la F es máxima y se define la magnitud de B determinando el valor de esa fuerza máxima:

B=\frac{F_\perp}{q_0v}

En consecuencia: Si una carga de prueba positiva q_0 se dispara con una velocidad v por un punto P y si obra una fuerza lateral F sobre la carga que se mueve, hay una inducción magnética B en el punto P siendo B el vector que satisface la relación:

\mathbf{F} = q_0 \mathbf{v} \times \mathbf{B}

La magnitud de F, de acuerdo a las reglas del producto vectorial, está dada por la expresión:

\,\!F=q_0vB\sen (\theta)

Expresión en la que \theta\; es el ángulo entre v y B.

El hecho de que la fuerza magnética sea siempre perpendicular a la dirección del movimiento implica que el trabajo realizado por la misma sobre la carga, es cero. En efecto, para un elemento de longitud \,\!dl de la trayectoria de la partícula, el trabajo \,\!dW es \,\! \vec F_B . dl que vale cero por ser \,\!F y \,\!dl perpendiculares. Así pues, un campo magnético estático no puede cambiar la energía cinética de una carga en movimiento.

Si una partícula cargada se mueve a través de una región en la que coexisten un campo eléctrico y uno magnético la fuerza resultante está dada por:

\,\! \vec F=q_0 \vec E + q_0 \vec v \times \vec B

Esta fórmula es conocida como Relación de Lorentz

Campo magnético en relatividad[editar]

Campo medido por dos observadores[editar]

La teoría de la relatividad especial probó que de la misma manera que espacio y tiempo no son conceptos absolutos, la parte eléctrica y magnética de un campo electromagnético dependen del observador. Eso significa que dados dos observadores \scriptstyle \mathcal{O} y \scriptstyle \bar{\mathcal{O}} en movimiento relativo un respecto a otro el campo magnético y eléctrico medido por cada uno de ellos no será el mismo. En el contexto de la relatividad especial si los dos observadores se mueven uno respecto a otro con velocidad uniforme v dirigida según el eje X, las componentes de los campos eléctricos medidas por uno y otro observador vendrán relacionadas por:

\bar{E}_x = E_x,
\quad \bar{E}_y = \frac{E_y - v B_z}{\sqrt{1-v^2/c^2}},
\quad \bar{E}_z = \frac{E_z + v B_y}{\sqrt{1-v^2/c^2}}

Y para los campos magnéticos se tendrá:

\bar{B}_x = B_x,
\quad \bar{B}_y = \frac{B_y + v E_z/c^2}{\sqrt{1-v^2/c^2}},
\quad \bar{B}_z = \frac{B_y - v E_y/c^2}{\sqrt{1-v^2/c^2}}

Nótese que en particular un observador en reposo respecto a una carga eléctrica detectará sólo campo eléctrico, mientras que los observadores que se mueven respecto a las cargas detectarán una parte eléctrica y magnética.

Campo creado por una carga en movimiento[editar]

El campo magnético creado por una carga en movimiento puede probarse por la relación general:

\mathbf{B} = \mathbf{v}\times\mathbf{E}/c^2

que es válida tanto en mecánica newtoniana como en mecánica relativista. Esto lleva a que una carga puntual moviéndose a una velocidad v proporciona un campo magnético dado por:

\mathbf{B} = \frac{\mu_0 q}{4\pi r^2} \frac{1-v^2/c^2}{[1-(v^2/c^2)\sin^2 \theta]^{3/2}} 
\mathbf{v}\times\mathbf{u}_r

Unidades y magnitudes típicas[editar]

La unidad de B en el SI es el tesla, que equivale a wéber por metro cuadrado (Wb/m²) o a voltio segundo por metro cuadrado (V s/m²); en unidades básicas es kg s−2 A−1. Su unidad en sistema de Gauss es el gauss (G); en unidades básicas es cm−1/2 g1/2 s−1.

La unidad de H en el SI es el amperio por metro (A/m) (a veces llamado amperivuelta por metro, (Av/m)). Su unidad en el sistema de Gauss es el oérsted (Oe), que es dimensionalmente igual al Gauss.

La magnitud del campo magnético terrestre en la superficie de la Tierra es de alrededor de 0.5G. Los imanes permanentes comunes, de hierro, generan campos de unos pocos cientos de Gauss, esto es a corto alcance la influencia sobre una brújula es alrededor de mil veces más intensa que la del campo magnético terrestre; como la intensidad se reduce con el cubo de la distancia, a distancias relativamente cortas el campo terrestre vuelve a dominar. Los imanes comerciales más potentes, basados en combinaciones de metales de transición y tierras raras generan campos hasta diez veces más intensos, de hasta 3000-4000 G, esto es, 0.3-0.4 T. El límite teórico para imanes permanentes es alrededor de diez veces más alto, unos 3 Tesla. Los centros de investigación especializados obtienen de forma rutinaria campos hasta diez veces más intensos, unos 30T, mediante electroimanes; se puede doblar este límite mediante campos pulsados, que permiten enfriarse al conductor entre pulsos. En circunstancias extraordinarias, es posible obtener campos incluso de 150 T o superiores, mediante explosiones que comprimen las líneas de campo; naturalmente en estos casos el campo dura sólo unos microsegundos. Por otro lado, los campos generados de forma natural en la superficie de un púlsar se estiman en el orden de los cientos de millones de Tesla.[3]

En el mundo microscópico, atendiendo a los valores del momento dipolar de iones magnéticos típicos y a la ecuación que rige la propagación del campo generado por un dipolo magnético, se verifica que a un nanómetro de distancia, el campo magnético generado por un electrón aislado es del orden de 3 G, el de una molécula imán típica, del orden de 30 G y el de un ion magnético típico puede tener un valor intermedio, de 5 a 15 G. A un Angstrom, que es un valor corriente para un radio atómico y por tanto el valor mínimo para el que puede tener sentido referirse al momento magnético de un ion, los valores son mil veces más elevados, esto es, del orden de magnitud del Tesla.

Véase también[editar]

Referencias[editar]

  1. El manual estándar sobre electrodinámica de Jackson sigue ese uso. Edward Purcell, in Electricity and Magnetism, McGraw-Hill, 1963, writes, Even some modern writers who treat B as the primary field feel obliged to call it the magnetic induction because the name magnetic field was historically preempted by H. This seems clumsy and pedantic. If you go into the laboratory and ask a physicist what causes the pion trajectories in his bubble chamber to curve, he'll probably answer "magnetic field," not "magnetic induction." You will seldom hear a geophysicist refer to the earth's magnetic induction, or an astrophysicist talk about the magnetic induction of the galaxy. We propose to keep on calling B the magnetic field. As for H, although other names have been invented for it, we shall call it "the field H" or even "the magnetic field H".
  2. W. K. H. Panofski y M. Philips, Classical electricity and magnetism, New York, Dover, 2005, p. 143.
  3. Patrick Fazekas. «Chapter 1.2:Sources of magnetic fields». Lecture notes on electron correlation and magnetism. pp. 5–7. ISBN 978-981-02-2474-5. 

Enlaces externos[editar]