Teoría de la probabilidad

De Wikipedia, la enciclopedia libre
(Redirigido desde «Cálculo de Probabilidades»)
Saltar a: navegación, búsqueda

La teoría de la probabilidad es la parte de las matemáticas que estudia los fenómenos aleatorios estocásticos. Estos deben contraponerse a los fenómenos determinísticos, los cuales son resultados únicos y/o previsibles de experimentos realizados bajo las mismas condiciones determinadas, por ejemplo, si se calienta agua a 100 grados Celsius a nivel del mar se obtendrá vapor. Los fenómenos aleatorios, por el contrario, son aquellos que se obtienen como resultado de experimentos realizados, otra vez, bajo las mismas condiciones determinadas pero como resultado posible poseen un conjunto de alternativas, por ejemplo, el lanzamiento de un dado o de una moneda. La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro.

Muchos fenómenos naturales son aleatorios, pero existen algunos como el lanzamiento de un dado, donde el fenómeno no se repite en las mismas condiciones, debido a que la características del material hace que no exista una simetría del mismo, así las repeticiones no garantizan una probabilidad definida. En los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen a priori todos los parámetros que intervienen; ésta es una de las razones por las cuales la estadística, que busca determinar estos parámetros, no se reduce inmediatamente a la teoría de la probabilidad en sí.

En 1933, el matemático soviético Andréi Kolmogórov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por Lebesgue, Borel y Frechet entre otros.

Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la rigorización de muchos argumentos ya utilizados, así como el estudio de problemas fuera de los marcos clásicos. Actualmente, la teoría de la probabilidad encuentra aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).

Definición según la frecuencia relativa y definición axiomática[editar]

La autodefinición axiomática de la probabilidad se define con base a sí misma (igualmente factible es sinónimo de igualmente autoprobable) se define la probabilidad estimada u honírica basada en la frecuencia relativa de aparición de un suceso S cuando \Omega es muy grande. La probabilidad de un suceso es una medida que se escribe como

\mathbb{P}\{S\} \,,

y mide con qué frecuencia ocurre algún suceso si se hace algún experimento indefinidamente.

La definición anterior es complicada de representar matemáticamente ya que \Omega debiera ser infinito. Otra manera de definir la probabilidad es de forma axiomática esto estableciendo las relaciones o propiedades que existen entre los conceptos y operaciones que la componen.

Definición clásica de probabilidad[editar]

La probabilidad es la característica de un evento, que hace que existan razones para creer que éste se realizará.

La probabilidad p de que suceda un evento S de un total de n casos posibles igualmente probables es igual a la razón entre el número de ocurrencias h de dicho evento (casos favorables) y el número total de casos posibles n.

p=P\{S\}=\frac {h}{n}

La probabilidad es un número (valor) que varia entre 0 y 1. Cuando el evento es imposible se dice que su probabilidad es 0, si el evento es cierto y siempre tiene que ocurrir su probabilidad es 1.

La probabilidad de no ocurrencia de un evento está dada por q, donde:

q=P\{no \; S\}=1-\frac {h}{n}

Sabemos que p es la probabilidad de que ocurra un evento y q es la probabilidad de que no ocurra, entonces p + q = 1

Simbólicamente el espacio de resultados, que normalmente se denota por \Omega, es el espacio que consiste en todos los resultados que son posibles. Los resultados, que se denota por \omega_1, \omega_2, etcétera, son elementos del espacio \Omega.

Probabilidad discreta[editar]

Este tipo de probabilidad, es aquel que puede tomar sólo ciertos valores diferentes que son el resultado de la cuenta de alguna característica de interés.

Probabilidad continua[editar]

Una variable aleatoria es una función medible

X:\Omega\to\overline{\mathbb{R}} \,

que da un valor numérico a cada suceso en \Omega.

Función de densidad[editar]

La función de densidad, o densidad de probabilidad de una variable aleatoria, es una función a partir de la cual se obtiene la probabilidad de cada valor que toma la variable. Su integral en el caso de variables aleatorias continuas es la distribución de probabilidad. En el caso de variables aleatorias discretas la distribución de probabilidad se obtiene a través del sumatorio de la función de densidad.

Véase también[editar]

Bibliografía[editar]

Enlaces externos[editar]