Ángulos complementarios

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Los ángulos α y β son complementarios.

Los ángulos complementarios son aquellos ángulos cuyas medidas suman 90º (grados sexagesimales). Si dos ángulos complementarios son consecutivos, los lados no comunes de los dos forman un ángulo recto.

Así, para obtener el ángulo complementario de α, teniendo α una amplitud de 70°, se restará α de 90°:

β = 90° – 70º = 20º
el ángulo β (beta) es el complementario de α (alfa).

Sabiendo esto, dichos ángulos formarán siempre un triángulo rectángulo puesto que los ángulos en un triángulo rectángulo son uno de 90º y los otros dos deben sumar 90 con el del cateto adyacente y se multiplica por la hipotenusa (180º(grados totales de un triángulo)-90º=90º). Por tanto, el seno de α es igual al coseno de β y el seno de β igual al coseno de α puesto que pertenecen al mismo triángulo rectángulo.

La diagonal de un rectángulo también configura ángulos complementarios(90°) con los lados adyacentes.

Véase también[editar]

Relaciones aritméticas entre ángulos:

Relaciones posicionales entre ángulos:

Determinados por dos paralelas y una transversal

Enlaces externos[editar]